Multifunctional Polymeric Bioactive Coatings on Ti Implants through the Drug Delivery Approach: In Vitro Corrosion Resistance, Biocompatibility, and Antibacterial Characteristics.
A Madhan Kumar, M A Hussein, Faisal Abdelrahim, Nare Ko, Suresh Ramakrishna, S Saravanan, Mohamed Javid, Seung Jun Oh
{"title":"Multifunctional Polymeric Bioactive Coatings on Ti Implants through the Drug Delivery Approach: <i>In Vitro</i> Corrosion Resistance, Biocompatibility, and Antibacterial Characteristics.","authors":"A Madhan Kumar, M A Hussein, Faisal Abdelrahim, Nare Ko, Suresh Ramakrishna, S Saravanan, Mohamed Javid, Seung Jun Oh","doi":"10.1021/acsabm.4c01337","DOIUrl":null,"url":null,"abstract":"<p><p>In the current study, we developed a controlled drug delivery system using a polymeric matrix composed of biopolymer poly(vinylidene fluoride) (PVDF) and ciprofloxacin (CPF)-loaded titanium (Ti) nanotubes (TNTs) on Ti substrates for biomedical applications. The TNT arrays over the Ti surface were obtained through an anodization route. The PVDF coatings were dip-coated on TNT-Ti loaded with CPF. The chemical, microstructure, and surface properties of the TNTs and coated surfaces were characterized using FTIR, XRD, transmission electron microscopy (TEM), scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS), and surface hydrophilicity analyses. The performance of the implant surfaces was evaluated through <i>in vitro</i> corrosion studies in simulated body fluid (SBF), biocompatibility with MG63 cells, and antibacterial properties. The results revealed that the PVDF/0.1CPF coatings exhibited sustained release of CPF from the polymer matrix at a linear rate and releasing profile for 168 h. PVDF/0.1CPF coating showed decreased corrosion current density (4.457 × 10<sup>-9</sup> A/cm<sup>2</sup>) by 2 orders of magnitude than that of the Ti substrate, indicating enhanced corrosion protection in the SBF. PVDF/0.1CPF coating showed an antibacterial efficacy of 84.44% against <i>Escherichia coli</i> and 88.33% against <i>Bacillus licheniformis</i> after 24 h. The biocompatibility result showed that after 5 days of culturing, the PVDF/0.1CPF was pointedly higher than that of the pure PVDF and uncoated specimens. Additionally, after 7 days of culture, the quantity of cells on the PVDF/0.1CPF coating continued to increase significantly, whereas the bare specimens and pristine PVDF showed a lower rate of proliferation. The proposed biocompatible polymeric coatings hold synergic antibacterial and corrosion-resistant potential for biomedical applications.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In the current study, we developed a controlled drug delivery system using a polymeric matrix composed of biopolymer poly(vinylidene fluoride) (PVDF) and ciprofloxacin (CPF)-loaded titanium (Ti) nanotubes (TNTs) on Ti substrates for biomedical applications. The TNT arrays over the Ti surface were obtained through an anodization route. The PVDF coatings were dip-coated on TNT-Ti loaded with CPF. The chemical, microstructure, and surface properties of the TNTs and coated surfaces were characterized using FTIR, XRD, transmission electron microscopy (TEM), scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS), and surface hydrophilicity analyses. The performance of the implant surfaces was evaluated through in vitro corrosion studies in simulated body fluid (SBF), biocompatibility with MG63 cells, and antibacterial properties. The results revealed that the PVDF/0.1CPF coatings exhibited sustained release of CPF from the polymer matrix at a linear rate and releasing profile for 168 h. PVDF/0.1CPF coating showed decreased corrosion current density (4.457 × 10-9 A/cm2) by 2 orders of magnitude than that of the Ti substrate, indicating enhanced corrosion protection in the SBF. PVDF/0.1CPF coating showed an antibacterial efficacy of 84.44% against Escherichia coli and 88.33% against Bacillus licheniformis after 24 h. The biocompatibility result showed that after 5 days of culturing, the PVDF/0.1CPF was pointedly higher than that of the pure PVDF and uncoated specimens. Additionally, after 7 days of culture, the quantity of cells on the PVDF/0.1CPF coating continued to increase significantly, whereas the bare specimens and pristine PVDF showed a lower rate of proliferation. The proposed biocompatible polymeric coatings hold synergic antibacterial and corrosion-resistant potential for biomedical applications.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.