Multifunctional Polymeric Bioactive Coatings on Ti Implants through the Drug Delivery Approach: In Vitro Corrosion Resistance, Biocompatibility, and Antibacterial Characteristics.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2025-03-21 DOI:10.1021/acsabm.4c01337
A Madhan Kumar, M A Hussein, Faisal Abdelrahim, Nare Ko, Suresh Ramakrishna, S Saravanan, Mohamed Javid, Seung Jun Oh
{"title":"Multifunctional Polymeric Bioactive Coatings on Ti Implants through the Drug Delivery Approach: <i>In Vitro</i> Corrosion Resistance, Biocompatibility, and Antibacterial Characteristics.","authors":"A Madhan Kumar, M A Hussein, Faisal Abdelrahim, Nare Ko, Suresh Ramakrishna, S Saravanan, Mohamed Javid, Seung Jun Oh","doi":"10.1021/acsabm.4c01337","DOIUrl":null,"url":null,"abstract":"<p><p>In the current study, we developed a controlled drug delivery system using a polymeric matrix composed of biopolymer poly(vinylidene fluoride) (PVDF) and ciprofloxacin (CPF)-loaded titanium (Ti) nanotubes (TNTs) on Ti substrates for biomedical applications. The TNT arrays over the Ti surface were obtained through an anodization route. The PVDF coatings were dip-coated on TNT-Ti loaded with CPF. The chemical, microstructure, and surface properties of the TNTs and coated surfaces were characterized using FTIR, XRD, transmission electron microscopy (TEM), scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS), and surface hydrophilicity analyses. The performance of the implant surfaces was evaluated through <i>in vitro</i> corrosion studies in simulated body fluid (SBF), biocompatibility with MG63 cells, and antibacterial properties. The results revealed that the PVDF/0.1CPF coatings exhibited sustained release of CPF from the polymer matrix at a linear rate and releasing profile for 168 h. PVDF/0.1CPF coating showed decreased corrosion current density (4.457 × 10<sup>-9</sup> A/cm<sup>2</sup>) by 2 orders of magnitude than that of the Ti substrate, indicating enhanced corrosion protection in the SBF. PVDF/0.1CPF coating showed an antibacterial efficacy of 84.44% against <i>Escherichia coli</i> and 88.33% against <i>Bacillus licheniformis</i> after 24 h. The biocompatibility result showed that after 5 days of culturing, the PVDF/0.1CPF was pointedly higher than that of the pure PVDF and uncoated specimens. Additionally, after 7 days of culture, the quantity of cells on the PVDF/0.1CPF coating continued to increase significantly, whereas the bare specimens and pristine PVDF showed a lower rate of proliferation. The proposed biocompatible polymeric coatings hold synergic antibacterial and corrosion-resistant potential for biomedical applications.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In the current study, we developed a controlled drug delivery system using a polymeric matrix composed of biopolymer poly(vinylidene fluoride) (PVDF) and ciprofloxacin (CPF)-loaded titanium (Ti) nanotubes (TNTs) on Ti substrates for biomedical applications. The TNT arrays over the Ti surface were obtained through an anodization route. The PVDF coatings were dip-coated on TNT-Ti loaded with CPF. The chemical, microstructure, and surface properties of the TNTs and coated surfaces were characterized using FTIR, XRD, transmission electron microscopy (TEM), scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS), and surface hydrophilicity analyses. The performance of the implant surfaces was evaluated through in vitro corrosion studies in simulated body fluid (SBF), biocompatibility with MG63 cells, and antibacterial properties. The results revealed that the PVDF/0.1CPF coatings exhibited sustained release of CPF from the polymer matrix at a linear rate and releasing profile for 168 h. PVDF/0.1CPF coating showed decreased corrosion current density (4.457 × 10-9 A/cm2) by 2 orders of magnitude than that of the Ti substrate, indicating enhanced corrosion protection in the SBF. PVDF/0.1CPF coating showed an antibacterial efficacy of 84.44% against Escherichia coli and 88.33% against Bacillus licheniformis after 24 h. The biocompatibility result showed that after 5 days of culturing, the PVDF/0.1CPF was pointedly higher than that of the pure PVDF and uncoated specimens. Additionally, after 7 days of culture, the quantity of cells on the PVDF/0.1CPF coating continued to increase significantly, whereas the bare specimens and pristine PVDF showed a lower rate of proliferation. The proposed biocompatible polymeric coatings hold synergic antibacterial and corrosion-resistant potential for biomedical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Multifunctional Polymeric Bioactive Coatings on Ti Implants through the Drug Delivery Approach: In Vitro Corrosion Resistance, Biocompatibility, and Antibacterial Characteristics. The Emerging Role of Halloysite Clay Nanotube Formulations in Cosmetics and Topical Drug Delivery. Improving the Efficiency of Ultrasound and Microbubble Mediated Gene Delivery by Manipulation of Microbubble Lipid Composition. Heavy-Atom-Free Photosensitizer-Loaded Lipid Nanocapsules for Photodynamic Therapy. I2-Catalyzed Cascade Annulation/Cross-Dehydrogenative Coupling: Excellent Platform to Access 3-Sulfenyl Pyrazolo[1,5-a]pyrimidines with Potent Antibacterial Activity against Pseudomonas aeruginosa and Staphylococcus aureus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1