Jeongbin Lee, Jung-Tae Kim, Jieun Oh, Dongjun Lee, Seo-Hyun Lee, Hyekyung Kim, Jiwoo Oh, Younseon Wang, Woo-Hee Kim
{"title":"Advanced Fabrication of Ultrathin Ruthenium Films Using Synergistic Atomic Layer Deposition and Etching.","authors":"Jeongbin Lee, Jung-Tae Kim, Jieun Oh, Dongjun Lee, Seo-Hyun Lee, Hyekyung Kim, Jiwoo Oh, Younseon Wang, Woo-Hee Kim","doi":"10.1002/smtd.202402166","DOIUrl":null,"url":null,"abstract":"<p><p>Atomic-level surface preparation, using additive and subtractive atomic layer processes, has gradually become crucial for the more active process variations and highly selective process requirements. Precise control of surface roughness and coverage is a critical consideration in the fabrication of metal thin films. Herein, the fabrication of ultrathin, smooth Ru films with a thickness reduced to below 3 nm is reported. This process involves etching back after depositing a thick Ru film using a synergistic combination of atomic layer deposition (ALD) and atomic layer etching (ALE) techniques. The surface smoothing effect, while preserving surface coverage, is validated by initially performing the ALD process for Ru with (ethylbenzyl)(1-ethyl-1,4-cyclohexadienyl)Ru(0) precursor and O<sub>2</sub> gas, followed by the ALE process with 2,4-pentanedione and O<sub>2</sub> radicals. Under optimized conditions for atomically flat Ru surfaces, the surface quality of Ru films processed by ALD, and the combined ALD/ALE methods are compared. Consequently, it is demonstrated for the first time that the combined ALD/ALE process effectively reduces both thickness and asperities while smoothing the surface and maintaining nearly complete surface coverage down to the ≈1 nm scale. This approach enables the production of advanced electronic devices with precise control over surface properties at the Ångström level.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2402166"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202402166","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Atomic-level surface preparation, using additive and subtractive atomic layer processes, has gradually become crucial for the more active process variations and highly selective process requirements. Precise control of surface roughness and coverage is a critical consideration in the fabrication of metal thin films. Herein, the fabrication of ultrathin, smooth Ru films with a thickness reduced to below 3 nm is reported. This process involves etching back after depositing a thick Ru film using a synergistic combination of atomic layer deposition (ALD) and atomic layer etching (ALE) techniques. The surface smoothing effect, while preserving surface coverage, is validated by initially performing the ALD process for Ru with (ethylbenzyl)(1-ethyl-1,4-cyclohexadienyl)Ru(0) precursor and O2 gas, followed by the ALE process with 2,4-pentanedione and O2 radicals. Under optimized conditions for atomically flat Ru surfaces, the surface quality of Ru films processed by ALD, and the combined ALD/ALE methods are compared. Consequently, it is demonstrated for the first time that the combined ALD/ALE process effectively reduces both thickness and asperities while smoothing the surface and maintaining nearly complete surface coverage down to the ≈1 nm scale. This approach enables the production of advanced electronic devices with precise control over surface properties at the Ångström level.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.