{"title":"Forecasting the concentration of the components of the particulate matter in Poland using neural networks.","authors":"Jarosław Bernacki","doi":"10.1007/s11356-025-36265-y","DOIUrl":null,"url":null,"abstract":"<p><p>Air pollution is a significant global challenge with profound impacts on human health and the environment. Elevated concentrations of various air pollutants contribute to numerous premature deaths each year. In Europe, and particularly in Poland, air quality remains a critical concern due to pollutants such as particulate matter (PM), which pose serious risks to public health and ecological systems. Effective control of PM emissions and accurate forecasting of their concentrations are essential for improving air quality and supporting public health interventions. This paper presents four advanced deep learning-based forecasting methods: extended long short-term memory network (xLSTM), Kolmogorov-Arnold network (KAN), temporal convolutional network (TCN), and variational autoencoder (VAE). Using data from eight cities in Poland, we evaluate our methods' ability to predict particulate matter concentrations through extensive experiments, utilizing statistical hypothesis testing and error metrics such as mean absolute error (MAE) and root mean square error (RMSE). Our findings demonstrate that these methods achieve high prediction accuracy, significantly outperforming several state-of-the-art algorithms. The proposed forecasting framework offers practical applications for policymakers and public health officials by enabling timely interventions to decrease pollution impacts and enhance urban air quality management.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-025-36265-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Air pollution is a significant global challenge with profound impacts on human health and the environment. Elevated concentrations of various air pollutants contribute to numerous premature deaths each year. In Europe, and particularly in Poland, air quality remains a critical concern due to pollutants such as particulate matter (PM), which pose serious risks to public health and ecological systems. Effective control of PM emissions and accurate forecasting of their concentrations are essential for improving air quality and supporting public health interventions. This paper presents four advanced deep learning-based forecasting methods: extended long short-term memory network (xLSTM), Kolmogorov-Arnold network (KAN), temporal convolutional network (TCN), and variational autoencoder (VAE). Using data from eight cities in Poland, we evaluate our methods' ability to predict particulate matter concentrations through extensive experiments, utilizing statistical hypothesis testing and error metrics such as mean absolute error (MAE) and root mean square error (RMSE). Our findings demonstrate that these methods achieve high prediction accuracy, significantly outperforming several state-of-the-art algorithms. The proposed forecasting framework offers practical applications for policymakers and public health officials by enabling timely interventions to decrease pollution impacts and enhance urban air quality management.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.