A neuronal Slit1-dependent program rescues oligodendrocyte differentiation and myelination under chronic hypoxic conditions.

IF 7.5 1区 生物学 Q1 CELL BIOLOGY Cell reports Pub Date : 2025-03-20 DOI:10.1016/j.celrep.2025.115467
Wenxiu Dai, Ximing Nian, Zhihao Zhou, Ailian Du, Qi Liu, Shufang Jia, Yan Lu, Daopeng Li, Xiaoyun Lu, Yanqin Zhu, Qiuying Huang, Jiaquan Lu, Yunshan Xiao, Liangkai Zheng, Wanying Lei, Nengyin Sheng, Xiujuan Zang, Yanqiang Hou, Zilong Qiu, Ren Xu, Shuhua Xu, Xueqin Zhang, Liang Zhang
{"title":"A neuronal Slit1-dependent program rescues oligodendrocyte differentiation and myelination under chronic hypoxic conditions.","authors":"Wenxiu Dai, Ximing Nian, Zhihao Zhou, Ailian Du, Qi Liu, Shufang Jia, Yan Lu, Daopeng Li, Xiaoyun Lu, Yanqin Zhu, Qiuying Huang, Jiaquan Lu, Yunshan Xiao, Liangkai Zheng, Wanying Lei, Nengyin Sheng, Xiujuan Zang, Yanqiang Hou, Zilong Qiu, Ren Xu, Shuhua Xu, Xueqin Zhang, Liang Zhang","doi":"10.1016/j.celrep.2025.115467","DOIUrl":null,"url":null,"abstract":"<p><p>Oligodendrocyte maturation arrest in hypoxia-induced white matter injury (WMI) results in long-term neurofunctional disabilities of preterm infants. Although neurons are closely linked to myelination regulation, how neurons respond to the above process remains elusive. Here, we identify a compensatory role of neuronal Slit1-dependent signaling in protecting against hypoxia-induced hypomyelination and ameliorating motor and cognitive disabilities. Conditional ablation of Slit1 in neurons exacerbates hypoxia-induced hypomyelination but is negligible for developmental myelination. Secreted Slit1 from hypoxic neurons directly targets oligodendrocyte, acting through Robo2-srGAP1-RhoA signaling. Pharmacological inhibition of RhoA restores myelination and promotes neurofunctional recovery in adolescent mice. Notably, natural selection analysis and functional validation indicate an adaptive variant with higher Slit1 gene expression in the Tibetan population, which has low oxygen availability. Collectively, these findings show a neuronal Slit1-dependent program of OL differentiation and suggest that targeting the Slit1-Robo2 signaling axis may have therapeutic potential for treatment of preterm infants with hypoxic WMI.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 4","pages":"115467"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115467","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Oligodendrocyte maturation arrest in hypoxia-induced white matter injury (WMI) results in long-term neurofunctional disabilities of preterm infants. Although neurons are closely linked to myelination regulation, how neurons respond to the above process remains elusive. Here, we identify a compensatory role of neuronal Slit1-dependent signaling in protecting against hypoxia-induced hypomyelination and ameliorating motor and cognitive disabilities. Conditional ablation of Slit1 in neurons exacerbates hypoxia-induced hypomyelination but is negligible for developmental myelination. Secreted Slit1 from hypoxic neurons directly targets oligodendrocyte, acting through Robo2-srGAP1-RhoA signaling. Pharmacological inhibition of RhoA restores myelination and promotes neurofunctional recovery in adolescent mice. Notably, natural selection analysis and functional validation indicate an adaptive variant with higher Slit1 gene expression in the Tibetan population, which has low oxygen availability. Collectively, these findings show a neuronal Slit1-dependent program of OL differentiation and suggest that targeting the Slit1-Robo2 signaling axis may have therapeutic potential for treatment of preterm infants with hypoxic WMI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell reports
Cell reports CELL BIOLOGY-
CiteScore
13.80
自引率
1.10%
发文量
1305
审稿时长
77 days
期刊介绍: Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted. The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership. The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.
期刊最新文献
Bilirubin metabolism in the liver orchestrates antiviral innate immunity in the body. Orchestration of pluripotent stem cell genome reactivation during mitotic exit. Septo-hypothalamic regulation of binge-like alcohol consumption by the nociceptin system. The impact of Coronavirus Nsp1 on host mRNA degradation is independent of its role in translation inhibition. Lipid-metabolism-focused CRISPR screens identify enzymes of the mevalonate pathway as essential for prostate cancer growth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1