Parsimonious EBM: generalising the event-based model of disease progression for simultaneous events.

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2025-03-19 DOI:10.1016/j.neuroimage.2025.121162
Parker Cs, N P Oxtoby, A L Young, D C Alexander, H Zhang
{"title":"Parsimonious EBM: generalising the event-based model of disease progression for simultaneous events.","authors":"Parker Cs, N P Oxtoby, A L Young, D C Alexander, H Zhang","doi":"10.1016/j.neuroimage.2025.121162","DOIUrl":null,"url":null,"abstract":"<p><p>The event-based model of disease progression (EBM) infers a temporal ordering of biomarker abnormalities, defining different disease stages, from short-term data. A key modelling choice of the EBM is that biomarker abnormalities, termed events, are serially ordered. This enforces a strict equality between the number of input biomarkers and the number of model stages, limiting its ability to infer simple staging systems and latent disease processes. To overcome this, we introduce the parsimonious event-based model of disease progression (P-EBM). The P-EBM generalises the EBM to allow multiple new biomarker abnormalities, termed \"simultaneous events\", at each model stage. We evaluate the P-EBM performance in simulated data to show it accurately estimates orderings with arbitrary event arrangements under realistic experimental conditions. When applied to sporadic AD data from the Alzheimer's Disease Neuroimaging Initiative, the P-EBM estimated a sequence with 7 model stages from a dataset of 12 biomarkers that more closely fitted the data than the EBM. The sets of simultaneous events, such as decreased cerebrospinal fluid total tau and p-tau<sub>181</sub>, correspond closely to latent disease processes. P-EBM patient stages were strongly associated with clinical diagnosis at baseline and future conversion and could be accurately estimated from a smaller number of biomarkers than the EBM. The P-EBM enables the data-driven discovery of simple disease staging systems which could highlight new latent disease processes and suggest practical strategies for patient staging.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":" ","pages":"121162"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2025.121162","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The event-based model of disease progression (EBM) infers a temporal ordering of biomarker abnormalities, defining different disease stages, from short-term data. A key modelling choice of the EBM is that biomarker abnormalities, termed events, are serially ordered. This enforces a strict equality between the number of input biomarkers and the number of model stages, limiting its ability to infer simple staging systems and latent disease processes. To overcome this, we introduce the parsimonious event-based model of disease progression (P-EBM). The P-EBM generalises the EBM to allow multiple new biomarker abnormalities, termed "simultaneous events", at each model stage. We evaluate the P-EBM performance in simulated data to show it accurately estimates orderings with arbitrary event arrangements under realistic experimental conditions. When applied to sporadic AD data from the Alzheimer's Disease Neuroimaging Initiative, the P-EBM estimated a sequence with 7 model stages from a dataset of 12 biomarkers that more closely fitted the data than the EBM. The sets of simultaneous events, such as decreased cerebrospinal fluid total tau and p-tau181, correspond closely to latent disease processes. P-EBM patient stages were strongly associated with clinical diagnosis at baseline and future conversion and could be accurately estimated from a smaller number of biomarkers than the EBM. The P-EBM enables the data-driven discovery of simple disease staging systems which could highlight new latent disease processes and suggest practical strategies for patient staging.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于事件的疾病进展模型(EBM)从短期数据中推断出生物标志物异常的时间顺序,从而定义不同的疾病阶段。EBM 的一个关键建模选择是,生物标志物异常(称为事件)是按序列排序的。这就强制要求输入生物标记物的数量与模型阶段的数量严格相等,从而限制了其推断简单分期系统和潜在疾病过程的能力。为了克服这一问题,我们引入了基于事件的疾病进展解析模型(P-EBM)。P-EBM 对 EBM 进行了扩展,允许在每个模型阶段出现多个新的生物标记异常,称为 "同时事件"。我们在模拟数据中对 P-EBM 的性能进行了评估,结果表明它能在真实的实验条件下准确估计任意事件安排的排序。当应用于阿尔茨海默病神经影像倡议的散发性注意力缺失症数据时,P-EBM 从 12 个生物标记物的数据集中估算出了一个包含 7 个模型阶段的序列,该序列比 EBM 更接近数据。脑脊液总 tau 和 p-tau181 下降等同时发生的事件与潜在的疾病过程密切相关。P-EBM 患者分期与基线时的临床诊断和未来的转换密切相关,而且与 EBM 相比,P-EBM 可以通过较少的生物标记物进行准确估计。P-EBM能够以数据为驱动发现简单的疾病分期系统,从而突出新的潜在疾病过程,并为患者分期提出实用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
Event-related potential correlates of consciousness in simple auditory hallucinations ☆. Motor-based prediction mediates implicit vocal imitation. AI-based deformable hippocampal mesh reflects hippocampal morphological characteristics in relation to cognition in healthy older adults. Precision-dependent modulation of social attention. Dynamic Grouping of Ongoing Activity in V1 Hypercolumns.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1