Tahereh Navidifar , Elahe Meftah , Hediyeh Baghsheikhi , Kimia Kazemzadeh , Hanie Karimi , Nima Rezaei
{"title":"Dual role of hepcidin in response to pathogens","authors":"Tahereh Navidifar , Elahe Meftah , Hediyeh Baghsheikhi , Kimia Kazemzadeh , Hanie Karimi , Nima Rezaei","doi":"10.1016/j.micpath.2025.107496","DOIUrl":null,"url":null,"abstract":"<div><div>Hepcidin is the primary regulator of vertebrate iron homeostasis. Its production is stimulated by systemic iron levels and inflammatory signals. Although the role of hepcidin in iron homeostasis is well characterized, its response to pathogenic agents is complex and diverse. In this review, we examine studies that investigate the role of hepcidin in response to infectious agents. Interleukin-6 (IL-6) is a key factor responsible for the induction of hepcidin expression. During infection, hepcidin-mediated depletion of extracellular iron serves as a protective mechanism against a variety of pathogens. However, accumulation of iron in macrophages through hepcidin-mediated pathways may increase susceptibility to intracellular pathogens such as <em>Mycobacterium tuberculosis</em>. Prolonged elevation of hepcidin production can lead to anemia due to reduced iron availability for erythropoiesis, a condition referred to as anemia of inflammation.</div><div>In addition, we highlight the role of hepcidin upregulation in several infectious contexts, including HIV-associated anemia, iron deficiency anemia in <em>Helicobacter pylori</em> infection, and post-malarial anemia in pediatric patients. In addition, we show that certain infectious agents, such as hepatitis C virus (HCV), can suppress hepcidin production during both the acute and chronic phases of infection, while hepatitis B virus (HBV) exhibits similar suppression during the chronic phase.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"203 ","pages":"Article 107496"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial pathogenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0882401025002219","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepcidin is the primary regulator of vertebrate iron homeostasis. Its production is stimulated by systemic iron levels and inflammatory signals. Although the role of hepcidin in iron homeostasis is well characterized, its response to pathogenic agents is complex and diverse. In this review, we examine studies that investigate the role of hepcidin in response to infectious agents. Interleukin-6 (IL-6) is a key factor responsible for the induction of hepcidin expression. During infection, hepcidin-mediated depletion of extracellular iron serves as a protective mechanism against a variety of pathogens. However, accumulation of iron in macrophages through hepcidin-mediated pathways may increase susceptibility to intracellular pathogens such as Mycobacterium tuberculosis. Prolonged elevation of hepcidin production can lead to anemia due to reduced iron availability for erythropoiesis, a condition referred to as anemia of inflammation.
In addition, we highlight the role of hepcidin upregulation in several infectious contexts, including HIV-associated anemia, iron deficiency anemia in Helicobacter pylori infection, and post-malarial anemia in pediatric patients. In addition, we show that certain infectious agents, such as hepatitis C virus (HCV), can suppress hepcidin production during both the acute and chronic phases of infection, while hepatitis B virus (HBV) exhibits similar suppression during the chronic phase.
期刊介绍:
Microbial Pathogenesis publishes original contributions and reviews about the molecular and cellular mechanisms of infectious diseases. It covers microbiology, host-pathogen interaction and immunology related to infectious agents, including bacteria, fungi, viruses and protozoa. It also accepts papers in the field of clinical microbiology, with the exception of case reports.
Research Areas Include:
-Pathogenesis
-Virulence factors
-Host susceptibility or resistance
-Immune mechanisms
-Identification, cloning and sequencing of relevant genes
-Genetic studies
-Viruses, prokaryotic organisms and protozoa
-Microbiota
-Systems biology related to infectious diseases
-Targets for vaccine design (pre-clinical studies)