Synergistic Enhancement of Vectorial Separation of Photogenerated Charge Carriers via Heterojunction and Quantum Confinement Effects

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2025-03-04 DOI:10.1021/acsaem.4c03331
Yachong Wang, Chaoyue Zheng, Youlin Wu, Teng Li, Jiangli Wang, Jihuai Wu, Fuda Yu*, Canzhong Lu* and Yiming Xie*, 
{"title":"Synergistic Enhancement of Vectorial Separation of Photogenerated Charge Carriers via Heterojunction and Quantum Confinement Effects","authors":"Yachong Wang,&nbsp;Chaoyue Zheng,&nbsp;Youlin Wu,&nbsp;Teng Li,&nbsp;Jiangli Wang,&nbsp;Jihuai Wu,&nbsp;Fuda Yu*,&nbsp;Canzhong Lu* and Yiming Xie*,&nbsp;","doi":"10.1021/acsaem.4c03331","DOIUrl":null,"url":null,"abstract":"<p >Solar-driven water splitting for hydrogen production is a promising solution to the energy crisis. Reducing the recombination of photogenerated charge carriers is a key strategy for enhancing the hydrogen evolution performance. In this study, a type-II heterojunction catalyst, CdS/Co<sub>3</sub>O<sub>4</sub>, was successfully prepared using a self-assembly method. The tight coupling between CdS and Co<sub>3</sub>O<sub>4</sub> facilitates efficient electron transfer. The heterojunction promotes the separation of photogenerated electrons, thereby reducing the charge carrier recombination. Additionally, the quantum confinement effect of Co<sub>3</sub>O<sub>4</sub> shortens the electron migration distance. Under illumination with a 10 W white light source, the hydrogen evolution rate of CdS/Co<sub>3</sub>O<sub>4</sub> reached 21.07 mmol g<sup>–1</sup> h<sup>–1</sup>, approximately three times that of pure CdS. Electron paramagnetic resonance and density functional theory calculations were employed to elucidate the electron transfer mechanism during the photocatalytic process. This study provides a theoretical foundation for the design and mechanistic investigation of quantum-dot-based heterojunction photocatalysts.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 6","pages":"3707–3714 3707–3714"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c03331","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-driven water splitting for hydrogen production is a promising solution to the energy crisis. Reducing the recombination of photogenerated charge carriers is a key strategy for enhancing the hydrogen evolution performance. In this study, a type-II heterojunction catalyst, CdS/Co3O4, was successfully prepared using a self-assembly method. The tight coupling between CdS and Co3O4 facilitates efficient electron transfer. The heterojunction promotes the separation of photogenerated electrons, thereby reducing the charge carrier recombination. Additionally, the quantum confinement effect of Co3O4 shortens the electron migration distance. Under illumination with a 10 W white light source, the hydrogen evolution rate of CdS/Co3O4 reached 21.07 mmol g–1 h–1, approximately three times that of pure CdS. Electron paramagnetic resonance and density functional theory calculations were employed to elucidate the electron transfer mechanism during the photocatalytic process. This study provides a theoretical foundation for the design and mechanistic investigation of quantum-dot-based heterojunction photocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用异质结和量子限制效应协同增强光生载流子的矢量分离
太阳能驱动的水分离制氢技术是解决能源危机的一个前景广阔的方案。减少光生电荷载流子的重组是提高氢进化性能的关键策略。本研究采用自组装方法成功制备了一种 II 型异质结催化剂 CdS/Co3O4。CdS 与 Co3O4 之间的紧密耦合促进了高效的电子转移。异质结促进了光生电子的分离,从而减少了电荷载流子的重组。此外,Co3O4 的量子约束效应缩短了电子迁移距离。在 10 W 白光光源的照射下,CdS/Co3O4 的氢进化速率达到 21.07 mmol g-1 h-1,约为纯 CdS 的三倍。电子顺磁共振和密度泛函理论计算阐明了光催化过程中的电子转移机制。这项研究为基于量子点的异质结光催化剂的设计和机理研究提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Issue Publication Information Issue Editorial Masthead 70 Years of Excellence: Materials Science at Donghua University Online Mass Spectrometry Investigation of SEI Formation on Carbon Electrode Surfaces in Sodium-Ion Batteries: Oxygen and Additive Effects Synthesis of Stoichiometric Cu3BiS3 Thin Films through Sulfurization of Oxide Precursors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1