Deep Learning-Driven Approach for Handwritten Chinese Character Classification

IF 0.5 4区 数学 Q3 MATHEMATICS Doklady Mathematics Pub Date : 2025-03-22 DOI:10.1134/S1064562424602245
B. Kriuk, F. Kriuk
{"title":"Deep Learning-Driven Approach for Handwritten Chinese Character Classification","authors":"B. Kriuk,&nbsp;F. Kriuk","doi":"10.1134/S1064562424602245","DOIUrl":null,"url":null,"abstract":"<p>Handwritten character recognition (HCR) is a challenging problem for machine learning researchers. Unlike printed text data, handwritten character datasets have more variation due to human-introduced bias. With numerous unique character classes present, some data, such as Logographic Scripts or Sino-Korean character sequences, bring new complications to the HCR problem. The classification task on such datasets requires the model to learn high-complexity details of the images that share similar features. With recent advances in computational resource availability and further computer vision theory development, some research teams have effectively addressed the arising challenges. Although known for achieving high accuracy while keeping the number of parameters small, many common approaches are still not generalizable and use dataset-specific solutions to achieve better results. Due to complex structure, existing methods frequently prevent the solutions from gaining popularity. This paper proposes a highly scalable approach for detailed character image classification by introducing the model architecture, data preprocessing steps, and testing design instructions. We also perform experiments to compare the performance of our method with that of existing ones to show the improvements achieved.</p>","PeriodicalId":531,"journal":{"name":"Doklady Mathematics","volume":"110 1 supplement","pages":"S278 - S287"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424602245","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Handwritten character recognition (HCR) is a challenging problem for machine learning researchers. Unlike printed text data, handwritten character datasets have more variation due to human-introduced bias. With numerous unique character classes present, some data, such as Logographic Scripts or Sino-Korean character sequences, bring new complications to the HCR problem. The classification task on such datasets requires the model to learn high-complexity details of the images that share similar features. With recent advances in computational resource availability and further computer vision theory development, some research teams have effectively addressed the arising challenges. Although known for achieving high accuracy while keeping the number of parameters small, many common approaches are still not generalizable and use dataset-specific solutions to achieve better results. Due to complex structure, existing methods frequently prevent the solutions from gaining popularity. This paper proposes a highly scalable approach for detailed character image classification by introducing the model architecture, data preprocessing steps, and testing design instructions. We also perform experiments to compare the performance of our method with that of existing ones to show the improvements achieved.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Doklady Mathematics
Doklady Mathematics 数学-数学
CiteScore
1.00
自引率
16.70%
发文量
39
审稿时长
3-6 weeks
期刊介绍: Doklady Mathematics is a journal of the Presidium of the Russian Academy of Sciences. It contains English translations of papers published in Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences), which was founded in 1933 and is published 36 times a year. Doklady Mathematics includes the materials from the following areas: mathematics, mathematical physics, computer science, control theory, and computers. It publishes brief scientific reports on previously unpublished significant new research in mathematics and its applications. The main contributors to the journal are Members of the RAS, Corresponding Members of the RAS, and scientists from the former Soviet Union and other foreign countries. Among the contributors are the outstanding Russian mathematicians.
期刊最新文献
Intransitively Winning Chess Players’ Positions Coalition Pareto-Optimal Solution in a Nontransferable Game One-Armed Bandit Problem and the Mirror Descent Algorithm Intransitive Sets of Financial Strategies with Constant Levels Model of a Two-Level Hierarchical System with Cooperative Behavior of Lower-Level Elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1