P. Ramesh Babu, Kishor Palle, L. Srinivasa Rao, Sambhani Naga Gayatri, L. Vijayalakshmi, Seong Jin Kwon, R. Vijay, Rafa Almeer
{"title":"Electrical and Ionic Conduction Phenomena of Tl2O3 Mixed Multi-Component Li2O–PbO–B2O3–SiO2–Bi2O3–V2O5 Glass System","authors":"P. Ramesh Babu, Kishor Palle, L. Srinivasa Rao, Sambhani Naga Gayatri, L. Vijayalakshmi, Seong Jin Kwon, R. Vijay, Rafa Almeer","doi":"10.1134/S1087659624601175","DOIUrl":null,"url":null,"abstract":"<p>The synthesis of lithium lead borosilicate bismuth vanadate glasses with varying Tl<sub>2</sub>O<sub>3</sub> concentrations (between 0 to 5.0 mol %) was achieved through the implementation of the melt quenching technique. A comprehensive analysis has been conducted to examine the electrical and dielectric properties over a broad spectrum of frequencies (10<sup>2</sup>–10<sup>6</sup> Hz) and temperatures (303–573 K). According to the findings of conductivity studies, mixed conduction (both electronic and ionic) occurs in the produced glasses. As the concentration of Tl<sub>2</sub>O<sub>3</sub> increases in the base glass, the dielectric properties, including dielectric loss, dielectric constant, and ac conduction, exhibit a decreasing trend. An increasing number of V<sup>5+</sup> ions has been identified as being involved in the formation of networks near crystal structures of VO<sub>5</sub>. The quantitative study of ac conductivity and dielectric property data revealed that increasing the concentration of Tl<sub>2</sub>O<sub>3</sub> in the glass network increases the insulating character of the glass. In the glass structure, the migration of thallium ions to tetrahedral coordination from octahedral coordination occurs, accompanied by a de-clustering effect of these ions.</p>","PeriodicalId":580,"journal":{"name":"Glass Physics and Chemistry","volume":"50 5","pages":"483 - 495"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass Physics and Chemistry","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1087659624601175","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of lithium lead borosilicate bismuth vanadate glasses with varying Tl2O3 concentrations (between 0 to 5.0 mol %) was achieved through the implementation of the melt quenching technique. A comprehensive analysis has been conducted to examine the electrical and dielectric properties over a broad spectrum of frequencies (102–106 Hz) and temperatures (303–573 K). According to the findings of conductivity studies, mixed conduction (both electronic and ionic) occurs in the produced glasses. As the concentration of Tl2O3 increases in the base glass, the dielectric properties, including dielectric loss, dielectric constant, and ac conduction, exhibit a decreasing trend. An increasing number of V5+ ions has been identified as being involved in the formation of networks near crystal structures of VO5. The quantitative study of ac conductivity and dielectric property data revealed that increasing the concentration of Tl2O3 in the glass network increases the insulating character of the glass. In the glass structure, the migration of thallium ions to tetrahedral coordination from octahedral coordination occurs, accompanied by a de-clustering effect of these ions.
期刊介绍:
Glass Physics and Chemistry presents results of research on the inorganic and physical chemistry of glass, ceramics, nanoparticles, nanocomposites, and high-temperature oxides and coatings. The journal welcomes manuscripts from all countries in the English or Russian language.