A fungal pathogen suppresses host leaf senescence to increase infection

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-03-24 DOI:10.1038/s41467-025-58277-5
Yue Li, Xiangru Qu, Wenjuan Yang, Qin Wu, Xiaodong Wang, Qiantao Jiang, Jian Ma, Yazhou Zhang, Pengfei Qi, Guoyue Chen, Youliang Zheng, Xiaojie Wang, Yuming Wei, Qiang Xu
{"title":"A fungal pathogen suppresses host leaf senescence to increase infection","authors":"Yue Li, Xiangru Qu, Wenjuan Yang, Qin Wu, Xiaodong Wang, Qiantao Jiang, Jian Ma, Yazhou Zhang, Pengfei Qi, Guoyue Chen, Youliang Zheng, Xiaojie Wang, Yuming Wei, Qiang Xu","doi":"10.1038/s41467-025-58277-5","DOIUrl":null,"url":null,"abstract":"<p>Phytopathogens such as <i>Puccinia striiformis</i> f. sp. <i>tritici</i> (<i>Pst</i>) induce pigment retention at pathogen infection sites. Although pigment retention is commonly observed in diverse pathosystems, its underlying physiological mechanism remains largely unclear. Herein, we identify and characterize a wheat leaf senescence gene, <i>TaSGR1</i>, which enhances resistance against <i>Pst</i> by promoting leaf senescence and H<sub>2</sub>O<sub>2</sub> accumulation while inhibiting photosynthesis. Knockout of <i>TaSGR1</i> (STAYGREEN) in wheat increases pigment retention and plant susceptibility. Pst_TTP1 (TaTrx-Targeting Protein 1), a secreted rust fungal effector critical for <i>Pst</i> virulence, binds to the plastidial thioredoxin TaTrx (Thioredoxin), preventing its translocation into chloroplasts. Within the chloroplasts, TaTrx catalyzes the transformation of TaSGR1 oligomers into monomers. These TaSGR1 monomers accumulate in the chloroplasts, accelerating leaf senescence, H<sub>2</sub>O<sub>2</sub> accumulation, and cell death. The inhibition of this oligomer-to-monomer transformation, caused by the failure of TaTrx to enter the chloroplast due to Pst_TTP1, impairs plant resistance against <i>Pst</i>. Overall, our study reveals the suppression of redox signaling cascade that catalyzes the transformation of TaSGR1 oligomers into monomers within chloroplasts and the inhibition of leaf chlorosis by rust effectors as key mechanisms underlying disease susceptibility.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"34 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58277-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Phytopathogens such as Puccinia striiformis f. sp. tritici (Pst) induce pigment retention at pathogen infection sites. Although pigment retention is commonly observed in diverse pathosystems, its underlying physiological mechanism remains largely unclear. Herein, we identify and characterize a wheat leaf senescence gene, TaSGR1, which enhances resistance against Pst by promoting leaf senescence and H2O2 accumulation while inhibiting photosynthesis. Knockout of TaSGR1 (STAYGREEN) in wheat increases pigment retention and plant susceptibility. Pst_TTP1 (TaTrx-Targeting Protein 1), a secreted rust fungal effector critical for Pst virulence, binds to the plastidial thioredoxin TaTrx (Thioredoxin), preventing its translocation into chloroplasts. Within the chloroplasts, TaTrx catalyzes the transformation of TaSGR1 oligomers into monomers. These TaSGR1 monomers accumulate in the chloroplasts, accelerating leaf senescence, H2O2 accumulation, and cell death. The inhibition of this oligomer-to-monomer transformation, caused by the failure of TaTrx to enter the chloroplast due to Pst_TTP1, impairs plant resistance against Pst. Overall, our study reveals the suppression of redox signaling cascade that catalyzes the transformation of TaSGR1 oligomers into monomers within chloroplasts and the inhibition of leaf chlorosis by rust effectors as key mechanisms underlying disease susceptibility.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
真菌病原体抑制寄主叶片衰老以增加感染
植物病原体如小麦纹状锈菌(Pst)可诱导病原菌感染部位的色素滞留。虽然色素潴留在不同的病理系统中普遍存在,但其潜在的生理机制仍不清楚。在此,我们鉴定并鉴定了一个小麦叶片衰老基因TaSGR1,该基因通过促进叶片衰老和H2O2积累,抑制光合作用来增强对Pst的抗性。敲除小麦中TaSGR1 (STAYGREEN)增加色素保留和植物敏感性。Pst_TTP1 (TaTrx- targeting Protein 1)是一种对Pst毒力至关重要的分泌型锈病真菌效应物,它与塑性硫氧还蛋白TaTrx (thioredoxin)结合,阻止其转运到叶绿体中。在叶绿体内,TaTrx催化TaSGR1低聚物转化为单体。这些TaSGR1单体在叶绿体中积累,加速叶片衰老、H2O2积累和细胞死亡。由于Pst_TTP1导致TaTrx无法进入叶绿体,从而抑制了这种低聚物到单体的转化,从而削弱了植物对Pst的抗性。总的来说,我们的研究揭示了抑制氧化还原信号级联反应(催化TaSGR1寡聚物在叶绿体内转化为单体)和锈病效应物抑制叶片褪绿是病害易感性的关键机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Breaking dense integration limits: inverse-designed lithium niobate multimode photonic circuits. Chromatin remodeling factor BAF155 coordinates oligodendroglial-neuronal communications linked to regional myelination and autism-like behavioral deficits in mice Targeted antisense oligonucleotide treatment rescues developmental alterations in spinal muscular atrophy organoids TMEM120A maintains adipose tissue lipid homeostasis through ER CoA channeling HIF-1α-mediated feedback prevents TOR signalling from depleting oxygen supply and triggering stress during normal development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1