Ashutosh Sahoo, Ashvini Patel, Roger A. Lalancette, Frieder Jäkle
{"title":"B ← N Lewis Pair Fusion of N,N-Diaryldihydrophenazines: Effect on Structural, Electronic, and Emissive Properties","authors":"Ashutosh Sahoo, Ashvini Patel, Roger A. Lalancette, Frieder Jäkle","doi":"10.1002/anie.202503658","DOIUrl":null,"url":null,"abstract":"<p>Doping of polycyclic aromatic hydrocarbons (PAHs) with boron and/or nitrogen is emerging as a powerful tool to tailor the electronic structure and photophysical properties. As <i>N-</i>doped analogues of anthracene, <i>N,N</i>-dihydrophenazines play important roles as redox mediators, battery materials, luminophores, and photoredox catalysts. Although benzannulation has been used successfully as a structural constraint to control the excited state properties, fusion of the N-aryl groups to the phenazine backbone has rarely been explored. Herein, we report the first examples of dihydrophenazines, in which the N-aryl groups are fused to the phenazine backbone via B←N Lewis pair formation. This results in structural rigidification, locking the molecules in a bent conformation, while also modulating the electronic structure through molecular polarization. B─N fusion in <b>BNPz1−BNPz3</b> induces a quinoid resonance structure with significant C─N(py) double bond character and reduces the antiaromatic character of the central pyrazine ring. Borylation also lowers the HOMO/LUMO (highest occupied/lowest unoccupied molecular orbital) energies and engenders bathochromic shifts in the emission. Further rigidification in the solid state gives rise to enhanced emission quantum yields, consistent with aggregation-induced emission enhancement (AIEE) observed upon water addition to solutions in tetrahydrofuran (THF). The demonstrated structural control and fine-tuning of optoelectronic properties are of great significance to potential applications as emissive materials and in photocatalysis.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 22","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anie.202503658","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202503658","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Doping of polycyclic aromatic hydrocarbons (PAHs) with boron and/or nitrogen is emerging as a powerful tool to tailor the electronic structure and photophysical properties. As N-doped analogues of anthracene, N,N-dihydrophenazines play important roles as redox mediators, battery materials, luminophores, and photoredox catalysts. Although benzannulation has been used successfully as a structural constraint to control the excited state properties, fusion of the N-aryl groups to the phenazine backbone has rarely been explored. Herein, we report the first examples of dihydrophenazines, in which the N-aryl groups are fused to the phenazine backbone via B←N Lewis pair formation. This results in structural rigidification, locking the molecules in a bent conformation, while also modulating the electronic structure through molecular polarization. B─N fusion in BNPz1−BNPz3 induces a quinoid resonance structure with significant C─N(py) double bond character and reduces the antiaromatic character of the central pyrazine ring. Borylation also lowers the HOMO/LUMO (highest occupied/lowest unoccupied molecular orbital) energies and engenders bathochromic shifts in the emission. Further rigidification in the solid state gives rise to enhanced emission quantum yields, consistent with aggregation-induced emission enhancement (AIEE) observed upon water addition to solutions in tetrahydrofuran (THF). The demonstrated structural control and fine-tuning of optoelectronic properties are of great significance to potential applications as emissive materials and in photocatalysis.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.