Nachuan Song, Ruoyu Tao, Hongjin Li, Rui Zhang, Yan Huang, Le Zhang, Ying Liu, Dayong Yang, Chi Yao
{"title":"Spatially Controlled Co‐Delivery of Diagnostic and Therapeutic Agents Using DNA Nanoframeworks for Pancreatic Cancer Precision Therapy","authors":"Nachuan Song, Ruoyu Tao, Hongjin Li, Rui Zhang, Yan Huang, Le Zhang, Ying Liu, Dayong Yang, Chi Yao","doi":"10.1002/anie.202500566","DOIUrl":null,"url":null,"abstract":"Theranostic platforms that integrate diagnostic and therapeutic functionalities offer promising strategies for precision medicine, particularly in the treatment of major diseases. However, the development of platforms capable of achieving spatially controlled detection and therapy at the lesion site remains a significant challenge. Herein, we present a dual‐stimuli‐responsive DNA nanoframework that achieve spatially controlled co‐delivery of molecular beacon (MB) and Cas9 ribonucleoprotein (RNP), enabling simultaneous specific optical detection and efficient gene therapy for pancreatic cancer. The DNA nanoframeworks are synthesized via precipitation polymerization, utilizing acrylamide‐modified DNA to initiate a hybridization chain reaction that facilitates the effective loading of MB‐extended and sgRNA‐conjugated DNA hairpins. The Cas9 protein is efficiently loaded into the nanoframeworks through phase transition‐induced polymer chain rearrangement, overcoming steric hindrance. Upon aptamer‐mediated internalization into PANC‐1 cells, the overexpressed apurinic/apyrimidinic endonuclease 1 and ribonuclease H in cancer cells induce site‐specific cleave of MB and DNA‐RNA hybrid duplex, respectively. This cleavage restores fluorescence for specific optical detection, while the released Cas9 RNP performs gene editing for efficient therapy. Low fluorescence background and favorable biocompatibility are observed in normal cells. In a pancreatic cancer mouse model, the platform demonstrates significant detection‐guided antitumor efficacy, highlighting its potential for precision medicine in cancer therapy.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"69 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500566","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Theranostic platforms that integrate diagnostic and therapeutic functionalities offer promising strategies for precision medicine, particularly in the treatment of major diseases. However, the development of platforms capable of achieving spatially controlled detection and therapy at the lesion site remains a significant challenge. Herein, we present a dual‐stimuli‐responsive DNA nanoframework that achieve spatially controlled co‐delivery of molecular beacon (MB) and Cas9 ribonucleoprotein (RNP), enabling simultaneous specific optical detection and efficient gene therapy for pancreatic cancer. The DNA nanoframeworks are synthesized via precipitation polymerization, utilizing acrylamide‐modified DNA to initiate a hybridization chain reaction that facilitates the effective loading of MB‐extended and sgRNA‐conjugated DNA hairpins. The Cas9 protein is efficiently loaded into the nanoframeworks through phase transition‐induced polymer chain rearrangement, overcoming steric hindrance. Upon aptamer‐mediated internalization into PANC‐1 cells, the overexpressed apurinic/apyrimidinic endonuclease 1 and ribonuclease H in cancer cells induce site‐specific cleave of MB and DNA‐RNA hybrid duplex, respectively. This cleavage restores fluorescence for specific optical detection, while the released Cas9 RNP performs gene editing for efficient therapy. Low fluorescence background and favorable biocompatibility are observed in normal cells. In a pancreatic cancer mouse model, the platform demonstrates significant detection‐guided antitumor efficacy, highlighting its potential for precision medicine in cancer therapy.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.