Jianze Wang, Qianrui Guo, Lin He, Rui Song, Jinhong Du, Haoyi Zhou, Yameng Hao, Xiujie Yang, Feng Wang, Kui Li, Mo Li, Zhi Yang, Luyang Sun, Zhaofei Liu
{"title":"A Nanoradiosensitizer Potentiates Tumor Radiotherapy through JFK Inhibition and Hypoxia Alleviation","authors":"Jianze Wang, Qianrui Guo, Lin He, Rui Song, Jinhong Du, Haoyi Zhou, Yameng Hao, Xiujie Yang, Feng Wang, Kui Li, Mo Li, Zhi Yang, Luyang Sun, Zhaofei Liu","doi":"10.1021/acs.nanolett.5c00677","DOIUrl":null,"url":null,"abstract":"Radiotherapy (RT) is a primary treatment for breast cancer, but its effectiveness is often compromised by hypoxia and intrinsic resistance mechanisms. The F-box protein JFK is overexpressed in breast cancer and is associated with reduced radiosensitivity, but specific JFK inhibitors are currently unavailable. Herein, we developed spherical nanoparticles (SNP-JC) designed to co-deliver small interfering RNA targeting JFK and catalase to the tumor, aiming to silence JFK and alleviate hypoxia to overcome RT resistance. Positron emission tomography imaging demonstrated that SNP-JC efficiently accumulated in the tumors. SNP-JC significantly increased DNA damage in tumor cells after RT and promoted the immunogenic cell death. The combination of SNP-JC and RT activated CD8<sup>+</sup> T cells and elicited a robust antitumor immunity, resulting in suppressed primary tumor growth and reduced lung metastasis. Our findings demonstrate that a nanoplatform capable of simultaneously silencing JFK and mitigating hypoxia can enhance tumor radiosensitivity, improve antitumor efficacy, and prevent metastasis.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"71 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00677","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Radiotherapy (RT) is a primary treatment for breast cancer, but its effectiveness is often compromised by hypoxia and intrinsic resistance mechanisms. The F-box protein JFK is overexpressed in breast cancer and is associated with reduced radiosensitivity, but specific JFK inhibitors are currently unavailable. Herein, we developed spherical nanoparticles (SNP-JC) designed to co-deliver small interfering RNA targeting JFK and catalase to the tumor, aiming to silence JFK and alleviate hypoxia to overcome RT resistance. Positron emission tomography imaging demonstrated that SNP-JC efficiently accumulated in the tumors. SNP-JC significantly increased DNA damage in tumor cells after RT and promoted the immunogenic cell death. The combination of SNP-JC and RT activated CD8+ T cells and elicited a robust antitumor immunity, resulting in suppressed primary tumor growth and reduced lung metastasis. Our findings demonstrate that a nanoplatform capable of simultaneously silencing JFK and mitigating hypoxia can enhance tumor radiosensitivity, improve antitumor efficacy, and prevent metastasis.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.