{"title":"Persistent Chemiluminescence-Enabled Digital Bead Counting for Quantifying Attomolar MicroRNAs","authors":"Chao Lei, Wenjiao Fan, Jingjing Shi, Zhaowei Tian, Xinrui Duan, Chenghui Liu","doi":"10.1021/acs.nanolett.5c00838","DOIUrl":null,"url":null,"abstract":"Digital biosensing is the state-of-the-art technique for precisely quantifying low-abundance biomarkers but heavily limited to sophisticated fabrication of sealed microchambers and fluorescence signal readout. Herein, a novel persistent, enhanced-chemiluminescence (E-CL)-enabled microchamber-free digital counting strategy is proposed for miRNA analysis by using fully open microbeads (MBs) as independent microreactors and signaling units. The employment of a phenothiazine derivative enhancer efficiently transfers the flash-type CL of horseradish peroxidase (HRP)-H<sub>2</sub>O<sub>2</sub>-luminol into persistent and stable E-CL with more than 10<sup>3</sup>-fold signal enhancement. More importantly, by leveraging single miRNA molecule-activated deposition of HRP, the driving power of E-CL, on the miRNA-loaded MBs, the long-lasting E-CL can be finely sustained on the MBs’ surface, achieving CL-based binary MB counting for digital miRNA quantification at the aM level. This persistent E-CL-powered microchamber-free digital design may well complement prevalent fluorescence-based digital bioassays by effectively addressing their inherent drawbacks (photobleaching/quenching and scattering light background), thus expanding the digital biosensing toolbox.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"93 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00838","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Digital biosensing is the state-of-the-art technique for precisely quantifying low-abundance biomarkers but heavily limited to sophisticated fabrication of sealed microchambers and fluorescence signal readout. Herein, a novel persistent, enhanced-chemiluminescence (E-CL)-enabled microchamber-free digital counting strategy is proposed for miRNA analysis by using fully open microbeads (MBs) as independent microreactors and signaling units. The employment of a phenothiazine derivative enhancer efficiently transfers the flash-type CL of horseradish peroxidase (HRP)-H2O2-luminol into persistent and stable E-CL with more than 103-fold signal enhancement. More importantly, by leveraging single miRNA molecule-activated deposition of HRP, the driving power of E-CL, on the miRNA-loaded MBs, the long-lasting E-CL can be finely sustained on the MBs’ surface, achieving CL-based binary MB counting for digital miRNA quantification at the aM level. This persistent E-CL-powered microchamber-free digital design may well complement prevalent fluorescence-based digital bioassays by effectively addressing their inherent drawbacks (photobleaching/quenching and scattering light background), thus expanding the digital biosensing toolbox.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.