Construction of Local-Ion Trap in Phase-Reversed Mixed Matrix COF Membranes for Ultrahigh Ion Selectivity

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-03-24 DOI:10.1002/anie.202504990
Meidi Wang, Tian-Yu Ma, Zhuo-Hao Wu, Yawei Liu, Shuang Li, Zixuan Cheng, Xue-Qian Wu, Bojing Sun, Zhongyi Jiang, Dong-Sheng Li
{"title":"Construction of Local-Ion Trap in Phase-Reversed Mixed Matrix COF Membranes for Ultrahigh Ion Selectivity","authors":"Meidi Wang,&nbsp;Tian-Yu Ma,&nbsp;Zhuo-Hao Wu,&nbsp;Yawei Liu,&nbsp;Shuang Li,&nbsp;Zixuan Cheng,&nbsp;Xue-Qian Wu,&nbsp;Bojing Sun,&nbsp;Zhongyi Jiang,&nbsp;Dong-Sheng Li","doi":"10.1002/anie.202504990","DOIUrl":null,"url":null,"abstract":"<p>Artificial molecular/ion traps afford grand potential in membrane-based separation processes. However, the existing trap-based architectures often confer over-strong binding forces, which severely impede the release of bound solutes during their transmembrane diffusion processes. Herein, we propose an unprecedented local-ion trap bearing moderate binding force and additional repulsion force in a type of phase-reversed mixed matrix covalent organic framework (PRCOF) membrane. By implementing COF as a continuous phase and polymer as a dispersed phase at the molecular level, the local-ion trap is formed in the COF channels equipped with free amino groups from polyethyleneimine (PEI). This unique local-ion trap built by electronegative COF nano-domains and electropositive PEI nano-domains offers appropriate interaction toward Li<sup>+</sup>, which allows the precise recognition and rapid transport of Li<sup>+</sup> in the membrane channels. By tuning the microenvironments of local-ion trap, the optimum PRCOF-1 membrane exhibits considerably high actual selectivity of 190 along with a rapid Li<sup>+</sup> permeation rate of 0.262 mol h<sup>−1</sup> m<sup>−2</sup> in dealing with a Li<sup>+</sup>/Mg<sup>2+</sup> binary mixture. This work provides in-depth insights into the design of high-performance membranes with appropriate chemical interactions.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 22","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202504990","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial molecular/ion traps afford grand potential in membrane-based separation processes. However, the existing trap-based architectures often confer over-strong binding forces, which severely impede the release of bound solutes during their transmembrane diffusion processes. Herein, we propose an unprecedented local-ion trap bearing moderate binding force and additional repulsion force in a type of phase-reversed mixed matrix covalent organic framework (PRCOF) membrane. By implementing COF as a continuous phase and polymer as a dispersed phase at the molecular level, the local-ion trap is formed in the COF channels equipped with free amino groups from polyethyleneimine (PEI). This unique local-ion trap built by electronegative COF nano-domains and electropositive PEI nano-domains offers appropriate interaction toward Li+, which allows the precise recognition and rapid transport of Li+ in the membrane channels. By tuning the microenvironments of local-ion trap, the optimum PRCOF-1 membrane exhibits considerably high actual selectivity of 190 along with a rapid Li+ permeation rate of 0.262 mol h−1 m−2 in dealing with a Li+/Mg2+ binary mixture. This work provides in-depth insights into the design of high-performance membranes with appropriate chemical interactions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于超高离子选择性的反相混合基质COF膜局部离子阱的构建。
人工分子/离子陷阱在膜分离过程中具有巨大的潜力。然而,现有的基于陷阱的结构通常赋予了过强的结合力,这严重阻碍了结合的溶质在跨膜扩散过程中的释放。在此,我们提出了一种前所未有的局部离子阱,在一种相反转混合基质共价有机框架(PRCOF)膜中具有适度的结合力和额外的排斥力。通过在分子水平上将COF作为连续相,聚合物作为分散相,在COF通道中形成了局部离子阱,该通道中含有聚乙烯亚胺(PEI)的游离氨基。这种独特的局部离子陷阱由电负性COF纳米结构域和电正性PEI纳米结构域组成,提供了对Li+的适当相互作用,从而允许Li+在膜通道中精确识别和快速运输。通过调整局部离子阱的微环境,最佳的PRCOF-1膜在处理Li+/Mg2+二元混合物时,具有较高的实际选择性190和快速的Li+渗透速率0.262 mol h-1 m-2。这项工作为设计具有适当化学相互作用的高性能膜提供了深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Engineering Intralayer Anisotropy in Covalent Organic Frameworks Analyte‐Targeted Plasmonic Hotspots on Superlattice Mirror Enable Ultra‐Broad‐Range SERS Sensing of Acetylcholinesterase Non‐Radical Photocured 3D Printing of Liquid Crystal Elastomers Diazirines Beyond Photoaffinity Labeling: A Comprehensive Overview of Applications in Biological Sciences, Materials Chemistry, and NMR‐Spectroscopy A Fluorine-Free Chaotropic Electrolyte Promoting Zinc Peroxide Chemistry for Non-Alkaline Zinc-Air Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1