Xuan Wang , Xiangsheng Meng , Junfeng Han , Chen Wang , Yinghong He
{"title":"Wide-field-of-view rapid acquisition and tracking control for portable optical communication systems","authors":"Xuan Wang , Xiangsheng Meng , Junfeng Han , Chen Wang , Yinghong He","doi":"10.1016/j.optcom.2025.131790","DOIUrl":null,"url":null,"abstract":"<div><div>Optical communication technology has been extensively applied in long-distance space communication due to its numerous advantages. With the advancement of CubeSat technology, portable optical communication systems have also emerged. When applied to ground-based scenarios, this technology can effectively support emergency high-speed communication in environments where radio frequencies are unavailable or restricted. However, its primary limitation lies in the rapid acquisition of wide-field-of-view laser links. To address this challenge, we propose a compact coaxial transceiver design for a portable optical communication terminal, utilizing Micro-Electro-Mechanical Systems (MEMS) micromirrors and a Quadrant Detector (QD). Furthermore, we developed a QD spot position deviation rapid acquisition algorithm for quickly determining the laser spot position on the QD. This represents a novel and efficient technique for achieving fast and precise large-area acquisition and tracking control. Experimental results demonstrate that the proposed portable optical communication terminal is capable of rapid deployment and efficient laser link acquisition, completing acquisition within 83 s over a distance of 506 m, within a 60° × 40° field of view. These findings mark a significant advancement toward the practical application of ground-based portable optical communication technology.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"583 ","pages":"Article 131790"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401825003189","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Optical communication technology has been extensively applied in long-distance space communication due to its numerous advantages. With the advancement of CubeSat technology, portable optical communication systems have also emerged. When applied to ground-based scenarios, this technology can effectively support emergency high-speed communication in environments where radio frequencies are unavailable or restricted. However, its primary limitation lies in the rapid acquisition of wide-field-of-view laser links. To address this challenge, we propose a compact coaxial transceiver design for a portable optical communication terminal, utilizing Micro-Electro-Mechanical Systems (MEMS) micromirrors and a Quadrant Detector (QD). Furthermore, we developed a QD spot position deviation rapid acquisition algorithm for quickly determining the laser spot position on the QD. This represents a novel and efficient technique for achieving fast and precise large-area acquisition and tracking control. Experimental results demonstrate that the proposed portable optical communication terminal is capable of rapid deployment and efficient laser link acquisition, completing acquisition within 83 s over a distance of 506 m, within a 60° × 40° field of view. These findings mark a significant advancement toward the practical application of ground-based portable optical communication technology.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.