Morphology control of Ni(OH)2-TiO2 nanosheet array and its excellent electrochemical hydrogen evolution performance

IF 4.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Molecular Catalysis Pub Date : 2025-03-23 DOI:10.1016/j.mcat.2025.115042
Fen Qiao, Changshun Zheng, Jikang Zhao, Jiaxin Zhou, Genxiang Wang
{"title":"Morphology control of Ni(OH)2-TiO2 nanosheet array and its excellent electrochemical hydrogen evolution performance","authors":"Fen Qiao,&nbsp;Changshun Zheng,&nbsp;Jikang Zhao,&nbsp;Jiaxin Zhou,&nbsp;Genxiang Wang","doi":"10.1016/j.mcat.2025.115042","DOIUrl":null,"url":null,"abstract":"<div><div>Aiming at the kinetic bottleneck of hydrogen evolution reaction in hydrogen production by electrolysis of water, Ni(OH)<sub>2</sub>-TiO<sub>2</sub> composites were successfully prepared on nickel foam (NF) substrate by two-step hydrothermal method. By adjusting the concentration of nickel source and reaction conditions, the composite catalysts with excellent morphology and structure were constructed. The Ni(OH)<sub>2</sub>-TiO<sub>2</sub> catalyst prepared under the optimized conditions has an overpotential of only 63 mV at the current density of 10 mA·cm<sup>−2</sup>, showing lower Tafel slope, higher double layer capacitance and excellent reaction kinetics. The results of density functional theory (DFT) revealed the phenomenon of charge transfer inside the composite and the influence of interface effect on the electron structure, and further confirmed that the electrons transfer from Ni(OH)<sub>2</sub> to TiO<sub>2</sub> optimized the charge distribution inside the composite, promoted the charge transfer at the interface, and reduced the activation energy of catalytic reaction.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"579 ","pages":"Article 115042"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823125002287","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the kinetic bottleneck of hydrogen evolution reaction in hydrogen production by electrolysis of water, Ni(OH)2-TiO2 composites were successfully prepared on nickel foam (NF) substrate by two-step hydrothermal method. By adjusting the concentration of nickel source and reaction conditions, the composite catalysts with excellent morphology and structure were constructed. The Ni(OH)2-TiO2 catalyst prepared under the optimized conditions has an overpotential of only 63 mV at the current density of 10 mA·cm−2, showing lower Tafel slope, higher double layer capacitance and excellent reaction kinetics. The results of density functional theory (DFT) revealed the phenomenon of charge transfer inside the composite and the influence of interface effect on the electron structure, and further confirmed that the electrons transfer from Ni(OH)2 to TiO2 optimized the charge distribution inside the composite, promoted the charge transfer at the interface, and reduced the activation energy of catalytic reaction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ni(OH)2-TiO2纳米片阵列的形貌控制及其优异的电化学析氢性能
针对电解水制氢过程中析氢反应的动力学瓶颈,采用两步水热法在泡沫镍(NF)基体上成功制备了Ni(OH)2-TiO2复合材料。通过调整镍源浓度和反应条件,构建了具有优良形貌和结构的复合催化剂。在优化条件下制备的Ni(OH)2- tio2催化剂在电流密度为10 mA·cm−2时,过电位仅为63 mV,具有较低的Tafel斜率,较高的双层电容和良好的反应动力学。密度泛函理论(DFT)的结果揭示了复合材料内部的电荷转移现象以及界面效应对电子结构的影响,进一步证实了Ni(OH)2向TiO2的电子转移优化了复合材料内部的电荷分布,促进了界面处的电荷转移,降低了催化反应的活化能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
期刊最新文献
Biochemical characterization, crystal structure, and catalytic mechanism of a PET-hydrolase double mutant Chemoenzymatic synthesis of mirabegron using an engineered styrene monooxygenase Hydrogen Rich Syngas Production from Methane using Partial Oxidation over Sm-promoted Tungsten-zirconia Supported Ni Catalysts Graphical abstract TOC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1