Neural learning rules from associative networks theory

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2025-03-22 DOI:10.1016/j.neucom.2025.129865
Daniele Lotito
{"title":"Neural learning rules from associative networks theory","authors":"Daniele Lotito","doi":"10.1016/j.neucom.2025.129865","DOIUrl":null,"url":null,"abstract":"<div><div>Associative networks theory is increasingly providing tools to interpret update rules of artificial neural networks. At the same time, deriving neural learning rules from a solid theory remains a fundamental challenge.</div><div>We make some steps in this direction by considering general energy-based associative networks of continuous neurons and synapses that evolve in multiple time scales. We use the separation of these timescales to recover a limit in which the activation of the neurons, the energy of the system and the neural dynamics can all be recovered from a generating function. By allowing the generating function to depend on memories, we recover the conventional Hebbian modeling choice for the interaction strength between neurons. Finally, we propose and discuss a dynamics of memories that enables us to include learning in this framework.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"636 ","pages":"Article 129865"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225005375","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Associative networks theory is increasingly providing tools to interpret update rules of artificial neural networks. At the same time, deriving neural learning rules from a solid theory remains a fundamental challenge.
We make some steps in this direction by considering general energy-based associative networks of continuous neurons and synapses that evolve in multiple time scales. We use the separation of these timescales to recover a limit in which the activation of the neurons, the energy of the system and the neural dynamics can all be recovered from a generating function. By allowing the generating function to depend on memories, we recover the conventional Hebbian modeling choice for the interaction strength between neurons. Finally, we propose and discuss a dynamics of memories that enables us to include learning in this framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
联想网络理论的神经学习规则
联想网络理论为解释人工神经网络的更新规律提供了越来越多的工具。同时,从一个坚实的理论中推导出神经学习规则仍然是一个根本性的挑战。我们通过考虑在多个时间尺度上进化的连续神经元和突触的一般基于能量的联想网络,在这个方向上迈出了一些步骤。我们使用这些时间尺度的分离来恢复一个极限,在这个极限中神经元的激活,系统的能量和神经动力学都可以从一个生成函数中恢复。通过允许生成函数依赖于记忆,我们恢复了传统的神经元之间相互作用强度的Hebbian建模选择。最后,我们提出并讨论了记忆的动态,使我们能够在这个框架中包括学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Dismantling strategies for cost networks based on multi-view deep learning Contrastive coarse-to-fine medical segmentation with prototype guidance and dual-granularity fusion Offset-corrected query generation strategies for cross-modality misalignment in 3D object detection: aligning LiDAR and camera Attention-guided bidirectional memory autoencoder for video anomaly detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1