Multimodal multitask similarity learning for vision language model on radiological images and reports

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2025-03-18 DOI:10.1016/j.neucom.2025.130018
Yang Yu , Jiahao Wang , Weide Liu , Ivan Ho Mien , Pavitra Krishnaswamy , Xulei Yang , Jun Cheng
{"title":"Multimodal multitask similarity learning for vision language model on radiological images and reports","authors":"Yang Yu ,&nbsp;Jiahao Wang ,&nbsp;Weide Liu ,&nbsp;Ivan Ho Mien ,&nbsp;Pavitra Krishnaswamy ,&nbsp;Xulei Yang ,&nbsp;Jun Cheng","doi":"10.1016/j.neucom.2025.130018","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, large-scale Vision-Language Models (VLM) have shown promise in learning general representations for various medical image analysis tasks. However, current medical VLM methods typically employ contrastive learning approaches that have limited ability to capture nuanced yet crucial medical knowledge, particularly within similar medical images, and do not explicitly consider the uneven and complementary semantic information contained in different modalities. To address these challenges, we propose a novel Multimodal Multitask Similarity Learning (M2SL) method that learns joint representations of image–text pairs and captures the relational similarity between different modalities via a coupling network. Our method also notably leverages the rich information in the text inputs to construct a knowledge-driven semantic similarity matrix as the supervision signal. We conduct extensive experiments for cross-modal retrieval and zero-shot classification tasks on radiological images and reports and demonstrate substantial performance gains over existing methods. Our method also accommodates low-resource settings with limited training data availability and has significant implications for enhancing VLM development.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"636 ","pages":"Article 130018"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225006903","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, large-scale Vision-Language Models (VLM) have shown promise in learning general representations for various medical image analysis tasks. However, current medical VLM methods typically employ contrastive learning approaches that have limited ability to capture nuanced yet crucial medical knowledge, particularly within similar medical images, and do not explicitly consider the uneven and complementary semantic information contained in different modalities. To address these challenges, we propose a novel Multimodal Multitask Similarity Learning (M2SL) method that learns joint representations of image–text pairs and captures the relational similarity between different modalities via a coupling network. Our method also notably leverages the rich information in the text inputs to construct a knowledge-driven semantic similarity matrix as the supervision signal. We conduct extensive experiments for cross-modal retrieval and zero-shot classification tasks on radiological images and reports and demonstrate substantial performance gains over existing methods. Our method also accommodates low-resource settings with limited training data availability and has significant implications for enhancing VLM development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
放射图像和报告视觉语言模型的多模态多任务相似性学习
近年来,大规模视觉语言模型(VLM)在学习各种医学图像分析任务的通用表示方面显示出前景。然而,目前的医学VLM方法通常采用对比学习方法,这些方法在捕捉细微但重要的医学知识方面能力有限,特别是在相似的医学图像中,并且没有明确考虑不同模式中包含的不均匀和互补的语义信息。为了解决这些挑战,我们提出了一种新的多模态多任务相似性学习(M2SL)方法,该方法学习图像-文本对的联合表示,并通过耦合网络捕获不同模态之间的关系相似性。该方法还充分利用文本输入中的丰富信息,构建知识驱动的语义相似矩阵作为监督信号。我们对放射图像和报告的跨模态检索和零射击分类任务进行了广泛的实验,并证明了比现有方法有实质性的性能提高。我们的方法也适用于训练数据可用性有限的低资源设置,并且对增强VLM开发具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Dismantling strategies for cost networks based on multi-view deep learning Contrastive coarse-to-fine medical segmentation with prototype guidance and dual-granularity fusion LECMARL: A cooperative multi-agent reinforcement learning method based on lazy mechanisms and efficient exploration Offset-corrected query generation strategies for cross-modality misalignment in 3D object detection: aligning LiDAR and camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1