HDAC1 Promotes Hippocampal Neuronal Pyroptosis in Epileptic Mice Through the miR-15a-5p/Caspase-1 Axis

IF 3.8 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Neurochemical Research Pub Date : 2025-03-25 DOI:10.1007/s11064-025-04372-4
Yun Lv, Fenghua Sun, Binyu Pu
{"title":"HDAC1 Promotes Hippocampal Neuronal Pyroptosis in Epileptic Mice Through the miR-15a-5p/Caspase-1 Axis","authors":"Yun Lv,&nbsp;Fenghua Sun,&nbsp;Binyu Pu","doi":"10.1007/s11064-025-04372-4","DOIUrl":null,"url":null,"abstract":"<div><p>Status epilepticus (SE) is a life-threatening disorder associated with neuronal pyroptosis. This study aims to explore the mechanism of HDAC1 in hippocampal neuronal pyroptosis induced by kainic acid in mice, providing a theoretical basis for SE treatment. A mouse model of SE was established by kainic acid. After sh-HDAC1 injection, the severity of SE and hippocampal neuronal damage were assessed. Cell model was established using kainic acid-induced HT22, followed by detection of HDAC1, miR-15a-5p, Caspase-1, cleaved Caspase-1, H3K9ac, and GSDMD-N using qRT-PCR and Western blot assays. Levels of IL-1β, IL-18, and LDH were measured. The enrichment of HDAC1 on the miR-15a-5p promoter was detected. The binding of miR-15a-5p to Caspase-1 was validated. We found that HDAC1 was highly expressed in kainic acid-induced SE. HDAC1 knockdown alleviated the symptoms of SE, inhibited cleaved Caspase-1, GSDMD-N, IL-1β, and IL-18, and suppressed hippocampal neuronal pyroptosis. HDAC1 bound to the miR-15a-5p promoter and reduced H3K9ac, thereby inhibiting miR-15a-5p expression. miR-15a-5p bound to Caspase-1 and inhibited Caspase-1 expression. Inhibiting miR-15a-5p or overexpressing Caspase-1 partially reversed the inhibitory effect of si-HDAC1 on kainic acid-induced cell pyroptosis. In conclusion, HDAC1 aggravates hippocampal neuronal pyroptosis in SE via the miR-15a-5p/Caspase-1 axis through deacetylation of H3K9.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-025-04372-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Status epilepticus (SE) is a life-threatening disorder associated with neuronal pyroptosis. This study aims to explore the mechanism of HDAC1 in hippocampal neuronal pyroptosis induced by kainic acid in mice, providing a theoretical basis for SE treatment. A mouse model of SE was established by kainic acid. After sh-HDAC1 injection, the severity of SE and hippocampal neuronal damage were assessed. Cell model was established using kainic acid-induced HT22, followed by detection of HDAC1, miR-15a-5p, Caspase-1, cleaved Caspase-1, H3K9ac, and GSDMD-N using qRT-PCR and Western blot assays. Levels of IL-1β, IL-18, and LDH were measured. The enrichment of HDAC1 on the miR-15a-5p promoter was detected. The binding of miR-15a-5p to Caspase-1 was validated. We found that HDAC1 was highly expressed in kainic acid-induced SE. HDAC1 knockdown alleviated the symptoms of SE, inhibited cleaved Caspase-1, GSDMD-N, IL-1β, and IL-18, and suppressed hippocampal neuronal pyroptosis. HDAC1 bound to the miR-15a-5p promoter and reduced H3K9ac, thereby inhibiting miR-15a-5p expression. miR-15a-5p bound to Caspase-1 and inhibited Caspase-1 expression. Inhibiting miR-15a-5p or overexpressing Caspase-1 partially reversed the inhibitory effect of si-HDAC1 on kainic acid-induced cell pyroptosis. In conclusion, HDAC1 aggravates hippocampal neuronal pyroptosis in SE via the miR-15a-5p/Caspase-1 axis through deacetylation of H3K9.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HDAC1通过miR-15a-5p/Caspase-1轴促进癫痫小鼠海马神经元焦亡
癫痫持续状态(SE)是一种与神经元焦亡相关的危及生命的疾病。本研究旨在探讨HDAC1在kainic酸诱导小鼠海马神经元焦亡中的作用机制,为SE的治疗提供理论依据。用kainic酸建立小鼠SE模型。注射sh-HDAC1后,观察SE及海马神经元损伤程度。用kainic酸诱导的HT22建立细胞模型,然后用qRT-PCR和Western blot检测HDAC1、miR-15a-5p、Caspase-1、cleaved Caspase-1、H3K9ac和GSDMD-N。检测IL-1β、IL-18、LDH水平。检测到miR-15a-5p启动子上HDAC1的富集。验证miR-15a-5p与Caspase-1的结合。我们发现HDAC1在kainic酸诱导的SE中高表达。HDAC1敲低可减轻SE症状,抑制裂解型Caspase-1、GSDMD-N、IL-1β、IL-18,抑制海马神经元焦亡。HDAC1结合miR-15a-5p启动子并降低H3K9ac,从而抑制miR-15a-5p的表达。miR-15a-5p结合Caspase-1并抑制Caspase-1的表达。抑制miR-15a-5p或过表达Caspase-1部分逆转了si-HDAC1对kainic酸诱导的细胞焦亡的抑制作用。总之,HDAC1通过miR-15a-5p/Caspase-1轴,通过H3K9的去乙酰化,加重了SE海马神经元的焦亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurochemical Research
Neurochemical Research 医学-神经科学
CiteScore
7.70
自引率
2.30%
发文量
320
审稿时长
6 months
期刊介绍: Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.
期刊最新文献
Regulatory Landscapes of Protein Acylations in Neuroinflammation: From Molecular Mechanisms to Therapeutic Targets. Cerebrolysin Ameliorates Age-Induced Dendritic Spine Degeneration and Memory Decline in C57BL6 Mice. The LINC00968/miR-194-5p Axis Exacerbates Neurological Dysfunction After Intracerebral Hemorrhage by Regulating Oxidative Stress and Neuroinflammation. HAT1 Protects Against Cerebral Ischemia Injury by Inhibiting TFRC-Mediated Ferroptosis. Schisanhenol Inhibits MPTP/MPP+-Induced Ferroptosis in Dopaminergic Neurons Via Nrf2/TrxR1/GPX4 Pathway against Parkinson's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1