Multiscale Feature Fusion Booster Network for Segmentation of Colorectal Polyp

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Imaging Systems and Technology Pub Date : 2025-03-20 DOI:10.1002/ima.70068
Malik Abdul Manan, Jinchao Feng, Shahzad Ahmed, Abdul Raheem
{"title":"Multiscale Feature Fusion Booster Network for Segmentation of Colorectal Polyp","authors":"Malik Abdul Manan,&nbsp;Jinchao Feng,&nbsp;Shahzad Ahmed,&nbsp;Abdul Raheem","doi":"10.1002/ima.70068","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Addressing the challenges posed by colorectal polyp variability and imaging inconsistencies in endoscopic images, we propose the multiscale feature fusion booster network (MFFB-Net), a novel deep learning (DL) framework for the semantic segmentation of colorectal polyps to aid in early colorectal cancer detection. Unlike prior models, such as the pyramid vision transformer-based cascaded attention decoder (PVT-CASCADE) and the parallel reverse attention network (PraNet), MFFB-Net enhances segmentation accuracy and efficiency through a unique fusion of multiscale feature extraction in both the encoder and decoder stages, coupled with a booster module for refining fine-grained details and a bottleneck module for efficient feature compression. The network leverages multipath feature extraction with skip connections, capturing both local and global contextual information, and is rigorously evaluated on seven benchmark datasets, including Kvasir, CVC-ClinicDB, CVC-ColonDB, ETIS, CVC-300, BKAI-IGH, and EndoCV2020. MFFB-Net achieves state-of-the-art (SOTA) performance, with Dice scores of 94.38%, 91.92%, 91.21%, 80.34%, 82.67%, 76.92%, and 74.29% on CVC-ClinicDB, Kvasir, CVC-300, ETIS, CVC-ColonDB, EndoCV2020, and BKAI-IGH, respectively, outperforming existing models in segmentation accuracy and computational efficiency. MFFB-Net achieves real-time processing speeds of 26 FPS with only 1.41 million parameters, making it well suited for real-world clinical applications. The results underscore the robustness of MFFB-Net, demonstrating its potential for real-time deployment in computer-aided diagnosis systems and setting a new benchmark for automated polyp segmentation.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70068","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Addressing the challenges posed by colorectal polyp variability and imaging inconsistencies in endoscopic images, we propose the multiscale feature fusion booster network (MFFB-Net), a novel deep learning (DL) framework for the semantic segmentation of colorectal polyps to aid in early colorectal cancer detection. Unlike prior models, such as the pyramid vision transformer-based cascaded attention decoder (PVT-CASCADE) and the parallel reverse attention network (PraNet), MFFB-Net enhances segmentation accuracy and efficiency through a unique fusion of multiscale feature extraction in both the encoder and decoder stages, coupled with a booster module for refining fine-grained details and a bottleneck module for efficient feature compression. The network leverages multipath feature extraction with skip connections, capturing both local and global contextual information, and is rigorously evaluated on seven benchmark datasets, including Kvasir, CVC-ClinicDB, CVC-ColonDB, ETIS, CVC-300, BKAI-IGH, and EndoCV2020. MFFB-Net achieves state-of-the-art (SOTA) performance, with Dice scores of 94.38%, 91.92%, 91.21%, 80.34%, 82.67%, 76.92%, and 74.29% on CVC-ClinicDB, Kvasir, CVC-300, ETIS, CVC-ColonDB, EndoCV2020, and BKAI-IGH, respectively, outperforming existing models in segmentation accuracy and computational efficiency. MFFB-Net achieves real-time processing speeds of 26 FPS with only 1.41 million parameters, making it well suited for real-world clinical applications. The results underscore the robustness of MFFB-Net, demonstrating its potential for real-time deployment in computer-aided diagnosis systems and setting a new benchmark for automated polyp segmentation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
The effectiveness of afatinib and osimertinib in a Chinese patient with advanced lung adenocarcinoma harboring a rare triple EGFR mutation (R670W/H835L/L833V): a case report and literature review.
IF 4 ACS Applied Bio MaterialsPub Date : 2018-08-10 DOI: 10.2147/OTT.S167346
Bao-Dong Qin, Xiao-Dong Jiao, Ling-Yan Yuan, Ke Liu, Zhan Wang, Wen-Xing Qin, Yuan-Sheng Zang
Detection of activating EGFR and KRAS mutations in a single liquid biopsy from a patient with adenocarcinoma of the lung using hybrid capture based sequencing
IF 1.2 PneumologiePub Date : 2017-02-23 DOI: 10.1055/s-0037-1598273
S. Lakis, J. Mueller, M. Bertrand, J. Heuckmann, R. Menon, M. Netchaeva, J. Roeper, L. Heukamp, F. Griesinger
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
期刊最新文献
CS U-NET: A Medical Image Segmentation Method Integrating Spatial and Contextual Attention Mechanisms Based on U-NET Foreground Background Difference Knowledge-Based Small Sample Target Segmentation for Image-Guided Radiation Therapy IMDF-Net: Iterative U-Net With Multi-Kernel Dilated Convolution and Fusion Modules for Enhanced Retinal Vessel Segmentation Bottom Double Branch Path Networks With Confidence Calibration for Intracranial Aneurysms Detection in 3D MRA Quantitative Susceptibility Mapping MRI With Computer Vision Metrics to Reduce Scan Time for Brain Hemorrhage Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1