Surface Electrostatic Potential Roughness: A Crucial Factor Impacting Lithium Diffusion on Curved Transition Metal Dichalcogenide Surfaces

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2025-03-25 DOI:10.1021/acs.jpcc.4c08731
Jian Chen, Yao Kang, Xudong Wang, Hao Huang, Man Yao
{"title":"Surface Electrostatic Potential Roughness: A Crucial Factor Impacting Lithium Diffusion on Curved Transition Metal Dichalcogenide Surfaces","authors":"Jian Chen, Yao Kang, Xudong Wang, Hao Huang, Man Yao","doi":"10.1021/acs.jpcc.4c08731","DOIUrl":null,"url":null,"abstract":"Tuning the nanoscale morphology and structure is a key strategy for enhancing the electrostatic performance of layered transition metal dichalcogenide (TMD) electrodes, where curved structures are inevitably introduced. A comprehensive understanding of the Li-ion diffusion mechanism in curved TMD structures at the atomic scale can guide the high-throughput design of nanoscale electrode materials. By first-principles calculations, we investigated the lithium diffusion in TMDs curved structure and factors resulting in the diffusion barrier variation. Our results demonstrate that the curved structure of TMDs enhances lithium diffusion compared to the planar structure, with the effect of bending on lithium diffusion being influenced by multiple factors. By extracting and analyzing the surface electrostatic potential curve perpendicular to the lithium diffusion path, we introduced the <i>R</i><sub>Δ<i>q</i></sub>/<i>L</i> parameter to provide a unified explanation for the effect of bending on lithium diffusion, where <i>R</i><sub>Δ<i>q</i></sub> represents the roughness of the curve and <i>L</i> represents the projected length of the curve. For the same TMDs with varying curvature, the <i>R</i><sub>Δ<i>q</i></sub>/<i>L</i> perpendicular to the diffusion path is positively correlated with the lithium diffusion barrier on this path. Our results deepen the understanding of the lithium diffusion mechanism for the TMD curved structure and promote the follow-up design of TMD-based electrodes.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"57 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c08731","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tuning the nanoscale morphology and structure is a key strategy for enhancing the electrostatic performance of layered transition metal dichalcogenide (TMD) electrodes, where curved structures are inevitably introduced. A comprehensive understanding of the Li-ion diffusion mechanism in curved TMD structures at the atomic scale can guide the high-throughput design of nanoscale electrode materials. By first-principles calculations, we investigated the lithium diffusion in TMDs curved structure and factors resulting in the diffusion barrier variation. Our results demonstrate that the curved structure of TMDs enhances lithium diffusion compared to the planar structure, with the effect of bending on lithium diffusion being influenced by multiple factors. By extracting and analyzing the surface electrostatic potential curve perpendicular to the lithium diffusion path, we introduced the RΔq/L parameter to provide a unified explanation for the effect of bending on lithium diffusion, where RΔq represents the roughness of the curve and L represents the projected length of the curve. For the same TMDs with varying curvature, the RΔq/L perpendicular to the diffusion path is positively correlated with the lithium diffusion barrier on this path. Our results deepen the understanding of the lithium diffusion mechanism for the TMD curved structure and promote the follow-up design of TMD-based electrodes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表面静电势粗糙度:影响锂在弯曲过渡金属二硫化物表面扩散的关键因素
调整纳米尺度的形态和结构是提高层状过渡金属二掺杂化合物(TMD)电极静电性能的关键策略,其中不可避免地会引入曲面结构。在原子尺度上全面了解曲面 TMD 结构中的锂离子扩散机制可以指导纳米级电极材料的高通量设计。通过第一性原理计算,我们研究了 TMD 弯曲结构中的锂离子扩散以及导致扩散阻力变化的因素。结果表明,与平面结构相比,TMDs 的弯曲结构增强了锂的扩散,弯曲对锂扩散的影响受多种因素的影响。通过提取和分析垂直于锂扩散路径的表面静电位曲线,我们引入了 RΔq/L 参数,为弯曲对锂扩散的影响提供了统一的解释,其中 RΔq 代表曲线的粗糙度,L 代表曲线的投影长度。对于曲率不同的相同 TMD,垂直于扩散路径的 RΔq/L 与该路径上的锂扩散阻力呈正相关。我们的研究结果加深了对 TMD 曲线结构锂扩散机理的理解,促进了基于 TMD 的电极的后续设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Theoretical Study of High Harmonic Generation in Monolayer NbSe2 Electronic Structure and Defect-Induced Properties of Oxygen-Deficient CaMnO3−δ: Insights from First-Principles Calculations Nonadiabatic Dynamics of Ultrafast Interlayer Charge Transfer and Extended Photocarrier Lifetimes in GaSe/InTe Heterostructures Nonadiabatic Dynamics of Ultrafast Interlayer Charge Transfer and Extended Photocarrier Lifetimes in GaSe/InTe Heterostructures Spontaneous Folding of Suspended and Supported Graphene, and Other 2D Materials: Morphologies and Induced Pre-Tension
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1