Weed-crop dataset in precision agriculture: Resource for AI-based robotic weed control systems

IF 1.4 Q3 MULTIDISCIPLINARY SCIENCES Data in Brief Pub Date : 2025-03-19 DOI:10.1016/j.dib.2025.111486
Arjun Upadhyay , Sunil G. C , Maria Villamil Mahecha , Joseph Mettler , Kirk Howatt , William Aderholdt , Michael Ostlie , Xin Sun
{"title":"Weed-crop dataset in precision agriculture: Resource for AI-based robotic weed control systems","authors":"Arjun Upadhyay ,&nbsp;Sunil G. C ,&nbsp;Maria Villamil Mahecha ,&nbsp;Joseph Mettler ,&nbsp;Kirk Howatt ,&nbsp;William Aderholdt ,&nbsp;Michael Ostlie ,&nbsp;Xin Sun","doi":"10.1016/j.dib.2025.111486","DOIUrl":null,"url":null,"abstract":"<div><div>Effective weed management is crucial for maintaining optimal crop growth and achieve higher yield. Recent advancement in robotic technologies and advanced deep learning (DL) models is shaping the future of robotic weed control systems. However, DL models for weed identification requires substantial amount of data collected in natural field conditions. This article presents red, green, and blue (RGB) datasets for multiple weed species found across different crop production systems. DL models require sophisticated datasets for training the model to achieve high object detection accuracy. To achieve this, a real field dataset was collected under diverse environmental conditions to mimic the natural environment and exhibits the variability in datasets. This aims to improve the accuracy of deep learning models for real time weed identification in precision agriculture. The dataset presented in this article was collected using Canon RGB camera, mounted on the front of remote-controlled robotic platform. This dataset comprises 1120 labelled images presenting five species of weeds and eight different crop species. This resource can be utilized by researchers, educators, and students in developing DL models for weed identification. The dataset can be further enriched by combining it with other relevant weed-crop datasets to create more diverse and robust datasets. This will enhance the capabilities of DL algorithms to be integrated with robotic weed control platforms for precision weed management.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"60 ","pages":"Article 111486"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340925002185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Effective weed management is crucial for maintaining optimal crop growth and achieve higher yield. Recent advancement in robotic technologies and advanced deep learning (DL) models is shaping the future of robotic weed control systems. However, DL models for weed identification requires substantial amount of data collected in natural field conditions. This article presents red, green, and blue (RGB) datasets for multiple weed species found across different crop production systems. DL models require sophisticated datasets for training the model to achieve high object detection accuracy. To achieve this, a real field dataset was collected under diverse environmental conditions to mimic the natural environment and exhibits the variability in datasets. This aims to improve the accuracy of deep learning models for real time weed identification in precision agriculture. The dataset presented in this article was collected using Canon RGB camera, mounted on the front of remote-controlled robotic platform. This dataset comprises 1120 labelled images presenting five species of weeds and eight different crop species. This resource can be utilized by researchers, educators, and students in developing DL models for weed identification. The dataset can be further enriched by combining it with other relevant weed-crop datasets to create more diverse and robust datasets. This will enhance the capabilities of DL algorithms to be integrated with robotic weed control platforms for precision weed management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精准农业中的杂草作物数据集:基于人工智能的机器人除草控制系统的资源
有效的杂草管理对于保持作物的最佳生长和获得更高的产量至关重要。机器人技术的最新进展和先进的深度学习(DL)模型正在塑造机器人杂草控制系统的未来。然而,用于杂草识别的深度学习模型需要在自然田间条件下收集大量数据。本文介绍了在不同作物生产系统中发现的多种杂草的红、绿、蓝(RGB)数据集。深度学习模型需要复杂的数据集来训练模型,以达到较高的目标检测精度。为了实现这一目标,在不同的环境条件下收集了一个真实的现场数据集,以模拟自然环境,并展示数据集的可变性。这旨在提高深度学习模型在精准农业中实时杂草识别的准确性。本文数据集采用佳能RGB相机采集,安装在遥控机器人平台前端。该数据集包括1120张带标签的图像,展示了5种杂草和8种不同的作物。研究人员、教育工作者和学生可以利用该资源开发用于杂草识别的DL模型。通过将该数据集与其他相关的杂草作物数据集相结合,可以进一步丰富该数据集,以创建更多样化和更健壮的数据集。这将增强深度学习算法与机器人杂草控制平台的集成能力,以实现精确的杂草管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
期刊最新文献
Genotypic variation in lead (Pb) accumulation dataset in sweetpotato flesh for 10 accessions from the United States of America DEAST: A dataset for English-Arabic scientific translation and vice versa Latvian herbal medicines under the infrared lens: An FTIR-ATR dataset JaalTaka: A benchmark dataset for detecting counterfeit Bangladeshi banknotes Dataset for DME oxidation behavior of commercial Pt/Pd-series diesel oxidation catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1