BISNN: bio-information-fused spiking neural networks for enhanced EEG-based emotion recognition.

IF 3.9 3区 工程技术 Q2 NEUROSCIENCES Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-03-22 DOI:10.1007/s11571-025-10239-9
Hongze Sun, Shifeng Mao, Wuque Cai, Yan Cui, Duo Chen, Dezhong Yao, Daqing Guo
{"title":"BISNN: bio-information-fused spiking neural networks for enhanced EEG-based emotion recognition.","authors":"Hongze Sun, Shifeng Mao, Wuque Cai, Yan Cui, Duo Chen, Dezhong Yao, Daqing Guo","doi":"10.1007/s11571-025-10239-9","DOIUrl":null,"url":null,"abstract":"<p><p>Spiking neural networks (SNNs), known for their rich spatio-temporal dynamics, have recently gained considerable attention in EEG-based emotion recognition. However, conventional model training approaches often fail to fully exploit the capabilities of SNNs, posing challenges for effective EEG data analysis. In this work, we propose a novel bio-information-fused SNN (BISNN) model to enhance EEG-based emotion recognition. The BISNN model incorporates biologically plausible intrinsic parameters into spiking neurons and is initialized with a structurally equivalent pre-trained ANN model. By constructing a bio-information-fused loss function, the BISNN model enables simultaneous training under dual constraints. Extensive experiments on benchmark EEG-based emotion datasets demonstrate that the BISNN model achieves competitive performance compared to state-of-the-art methods. Additionally, ablation studies investigating various components further elucidate the mechanisms underlying the model's effectiveness and evolution, aligning well with previous findings.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"52"},"PeriodicalIF":3.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929665/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10239-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Spiking neural networks (SNNs), known for their rich spatio-temporal dynamics, have recently gained considerable attention in EEG-based emotion recognition. However, conventional model training approaches often fail to fully exploit the capabilities of SNNs, posing challenges for effective EEG data analysis. In this work, we propose a novel bio-information-fused SNN (BISNN) model to enhance EEG-based emotion recognition. The BISNN model incorporates biologically plausible intrinsic parameters into spiking neurons and is initialized with a structurally equivalent pre-trained ANN model. By constructing a bio-information-fused loss function, the BISNN model enables simultaneous training under dual constraints. Extensive experiments on benchmark EEG-based emotion datasets demonstrate that the BISNN model achieves competitive performance compared to state-of-the-art methods. Additionally, ablation studies investigating various components further elucidate the mechanisms underlying the model's effectiveness and evolution, aligning well with previous findings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BISNN:用于增强基于脑电图的情感识别的生物信息融合尖峰神经网络。
脉冲神经网络(SNNs)以其丰富的时空动态特性而闻名,近年来在基于脑电图的情绪识别中得到了广泛关注。然而,传统的模型训练方法往往不能充分利用snn的能力,这给有效的脑电数据分析带来了挑战。在这项工作中,我们提出了一种新的生物信息融合snnn (BISNN)模型来增强基于脑电图的情感识别。BISNN模型将生物学上合理的内在参数融入到尖峰神经元中,并使用结构等效的预训练ANN模型进行初始化。通过构造生物信息融合的损失函数,BISNN模型实现了双重约束下的同时训练。在基于脑电图的基准情绪数据集上进行的大量实验表明,与最先进的方法相比,BISNN模型取得了具有竞争力的性能。此外,消融研究调查了各种成分,进一步阐明了模型有效性和进化的机制,与先前的研究结果很好地一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
期刊最新文献
Research on the classification of EEG signals for dementia and its interpretability using the GWOCS agorithm. Dynamic temporal patterns of DMN connectivity in epilepsy using hidden (semi-) Markov models. Emergence of functionally differentiated structures via mutual information minimization in recurrent neural networks. Real-time driver activity detection using advanced deep learning models. Synaptic summation shapes information transfer in GABA-glutamate co-transmission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1