Unraveling active ensembles consisting of clusters and single atoms for oxygen reduction: a synergy of machine learning and DFT calculations†

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2025-03-26 DOI:10.1039/D5QI00219B
Xinyi Li, Dongxu Jiao, Jingxiang Zhao and Xiao Zhao
{"title":"Unraveling active ensembles consisting of clusters and single atoms for oxygen reduction: a synergy of machine learning and DFT calculations†","authors":"Xinyi Li, Dongxu Jiao, Jingxiang Zhao and Xiao Zhao","doi":"10.1039/D5QI00219B","DOIUrl":null,"url":null,"abstract":"<p >Catalytic ensembles combining nanoparticles/clusters and atomically dispersed metal sites have demonstrated promising performance for various reactions. However, the optimal combinations between nanoparticles/clusters and metal single atoms remain unexplored. Herein, we integrate machine learning (ML) with density functional theory (DFT) calculations to explore the active ensembles consisting of platinum-based metallic clusters (Pt<small><sub>3</sub></small>M) and nitrogen-coordinated metal single atoms on the N-doped graphene (NC) matrix (Pt<small><sub>3</sub></small>M-M′NC). A total of 1521 candidates were screened using readily available metal properties to estimate the oxygen reduction reaction overpotential (<em>η</em><small><sup>ORR</sup></small>), resulting in the identification of 24 active Pt<small><sub>3</sub></small>M-M′NC catalysts. Furthermore, the durability based on the <em>ab initio</em> molecular dynamics (AIMD) simulations, dissolution potential (<em>U</em><small><sub>diss</sub></small>), and cluster energies (<em>E</em><small><sub>cluster</sub></small>) was screened to identify four active and durable Pt<small><sub>3</sub></small>M-M′NC ensembles. The quantitative relationship between <em>η</em><small><sup>ORR</sup></small> and metal features is deduced, enabling rapid and cost-effective screening of the optimal Pt<small><sub>3</sub></small>M-M′NC ensemble for the ORR. This work provides a comprehensive framework for the rational design of efficient and durable catalysts for oxygen reduction, leveraging the synergistic power of machine learning and DFT calculations to optimize catalytic ensembles with high performance.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 10","pages":" 3704-3713"},"PeriodicalIF":6.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d5qi00219b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Catalytic ensembles combining nanoparticles/clusters and atomically dispersed metal sites have demonstrated promising performance for various reactions. However, the optimal combinations between nanoparticles/clusters and metal single atoms remain unexplored. Herein, we integrate machine learning (ML) with density functional theory (DFT) calculations to explore the active ensembles consisting of platinum-based metallic clusters (Pt3M) and nitrogen-coordinated metal single atoms on the N-doped graphene (NC) matrix (Pt3M-M′NC). A total of 1521 candidates were screened using readily available metal properties to estimate the oxygen reduction reaction overpotential (ηORR), resulting in the identification of 24 active Pt3M-M′NC catalysts. Furthermore, the durability based on the ab initio molecular dynamics (AIMD) simulations, dissolution potential (Udiss), and cluster energies (Ecluster) was screened to identify four active and durable Pt3M-M′NC ensembles. The quantitative relationship between ηORR and metal features is deduced, enabling rapid and cost-effective screening of the optimal Pt3M-M′NC ensemble for the ORR. This work provides a comprehensive framework for the rational design of efficient and durable catalysts for oxygen reduction, leveraging the synergistic power of machine learning and DFT calculations to optimize catalytic ensembles with high performance.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示由原子团和单原子组成的氧还原活性集合体:机器学习与 DFT 计算的协同作用
纳米颗粒/团簇与原子分散的金属位点相结合的催化体系在各种反应中表现出了良好的性能。然而,纳米颗粒/簇与金属单原子之间的最佳组合仍未被探索。在此,我们将机器学习(ML)与密度泛函理论(DFT)计算相结合,探索了氮掺杂石墨烯(NC)基体(Pt3M- m 'NC)上由铂基金属团簇(Pt3M)和氮配位金属单原子组成的有源系综。利用现成的金属性质来估计氧还原反应过电位(ηORR),共筛选了1521种候选催化剂,最终鉴定出24种活性Pt3M-M 'NC催化剂。此外,基于从头算分子动力学(AIMD)模拟、溶解势(Udiss)和簇能(Ecluster)筛选了4个活性持久的Pt3M-M 'NC体系。推导出ηORR与金属特征之间的定量关系,从而能够快速、经济地筛选最优的Pt3M-M 'NC ORR组合。这项工作为合理设计高效耐用的氧还原催化剂提供了一个全面的框架,利用机器学习和DFT计算的协同能力来优化高性能的催化剂组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
Zero thermal expansion in high-entropy molybdate Al pairing in 8-membered rings drives superior methanol amination on CHA zeolites Highly dispersed Ru clusters embedded nitrogen-doped hollow carbon spheres with tunable electronic property for efficient catalytic reductive amination of biomass-derived furfural A tris-azo anion radical ligand wrapped multiple redox singlet Co(II) complex for efficient molecular memristor towards neuromorphic computing Comparative insights into the role of oxygen vacancies in α-MnO2 for activating peroxymonosulfate and peroxydisulfate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1