Anionic F-doping-induced engineering of P2-type layered cathode materials for high-performance potassium-ion batteries†

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2025-03-26 DOI:10.1039/D5QI00385G
Yurong Wu, Ziyun Zhang, Jiangshan Huo, Runguo Zheng, Zhishuang Song, Zhiyuan Wang, Yanguo Liu and Dan Wang
{"title":"Anionic F-doping-induced engineering of P2-type layered cathode materials for high-performance potassium-ion batteries†","authors":"Yurong Wu, Ziyun Zhang, Jiangshan Huo, Runguo Zheng, Zhishuang Song, Zhiyuan Wang, Yanguo Liu and Dan Wang","doi":"10.1039/D5QI00385G","DOIUrl":null,"url":null,"abstract":"<p >P2-type layered oxides have emerged as promising cathode candidate materials for potassium-ion batteries. Nevertheless, unsatisfactory cycling stability hinders their practical application, chiefly arising from deleterious phase transitions and the Jahn–Teller distortion of Mn<small><sup>3+</sup></small>. Herein, an anion-doping strategy where F<small><sup>−</sup></small> is incorporated into P2-K<small><sub>0.6</sub></small>Zn<small><sub>0.1</sub></small>Ti<small><sub>0.05</sub></small>Al<small><sub>0.05</sub></small>Mn<small><sub>0.8</sub></small>O<small><sub>2</sub></small> (KTMO) cathode materials is proposed. Raman spectroscopy was employed to investigate the local chemical environment of these materials. The results revealed a slight shift to higher wavenumbers in the E<small><sub>g</sub></small> and A<small><sub>1g</sub></small> peaks, which was ascribed to the shortening of the average TM–O bond length triggered by the addition of F. <em>Ex situ</em> XRD analysis revealed that the material K<small><sub>0.6</sub></small>Zn<small><sub>0.1</sub></small>Ti<small><sub>0.05</sub></small>Al<small><sub>0.05</sub></small>Mn<small><sub>0.8</sub></small>O<small><sub>1.93</sub></small>F<small><sub>0.07</sub></small> effectively suppresses undesirable phase transitions. Moreover, the maximum variation in the lattice parameter <em>c</em> is only 2.2% during potassium insertion/extraction, which fully demonstrates the outstanding performance of this material in terms of structural stability. This strategy brings about excellent cycling stability with a reversible capacity of 131.8 mA h g<small><sup>−1</sup></small> and capacity retention of 76.8% after 100 cycles, within a voltage range of 2.0–4.0 V. These findings offer novel insights into the design of cathode materials possessing optimized structures and enhanced performance for potassium-ion batteries.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 13","pages":" 4237-4246"},"PeriodicalIF":6.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d5qi00385g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

P2-type layered oxides have emerged as promising cathode candidate materials for potassium-ion batteries. Nevertheless, unsatisfactory cycling stability hinders their practical application, chiefly arising from deleterious phase transitions and the Jahn–Teller distortion of Mn3+. Herein, an anion-doping strategy where F is incorporated into P2-K0.6Zn0.1Ti0.05Al0.05Mn0.8O2 (KTMO) cathode materials is proposed. Raman spectroscopy was employed to investigate the local chemical environment of these materials. The results revealed a slight shift to higher wavenumbers in the Eg and A1g peaks, which was ascribed to the shortening of the average TM–O bond length triggered by the addition of F. Ex situ XRD analysis revealed that the material K0.6Zn0.1Ti0.05Al0.05Mn0.8O1.93F0.07 effectively suppresses undesirable phase transitions. Moreover, the maximum variation in the lattice parameter c is only 2.2% during potassium insertion/extraction, which fully demonstrates the outstanding performance of this material in terms of structural stability. This strategy brings about excellent cycling stability with a reversible capacity of 131.8 mA h g−1 and capacity retention of 76.8% after 100 cycles, within a voltage range of 2.0–4.0 V. These findings offer novel insights into the design of cathode materials possessing optimized structures and enhanced performance for potassium-ion batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高性能钾离子电池的阴离子掺杂 P2 型层状阴极材料工程学
P2- 型层状氧化物是很有前途的钾离子电池阴极候选材料。然而,令人不满意的循环稳定性阻碍了它的实际应用,主要原因是有害的相变和 Mn3+ 的 Jahn-Teller 畸变。本文提出了一种阴离子掺杂策略,即在 P2-K0.6Zn0.1Ti0.05Al0.05Mn0.8O2 (KTMO) 阴极材料中加入 F-。拉曼测试用于研究材料的局部化学环境。原位 XRD 分析表明,K0.6Zn0.1Ti0.05Al0.05Mn0.8O1.93F0.07 材料有效地抑制了不良相变。此外,在钾插入/提取过程中,晶格参数 c 的最大变化仅为 2.2%,这充分证明了该材料在结构稳定性方面的出色表现。该策略带来了出色的循环稳定性,在 4.0 V 下循环 100 次后,可逆容量为 131.8 mAh g-1,容量保持率为 76.8%。这些发现为设计具有最佳结构和更高性能的钾离子电池阴极材料提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
AI-Powered Oriented Synthesis of Naphthalenediimide-based MOFs for Photochromic Encryption and Ammonia Sensing Enhanced Carrier Mobility-Driven Performance Improvement in Colloidal Quantum Dot Solar Cells Crystalline and Amorphous MOFs Based on an Amphiphilic Cyclic Stereoregular p-Carboxyphenylsiloxane: Synthesis, Structures and Properties Photocatalytic arylterpyridine iridium(III) complexes trigger oncosis in 2D and 3D cancer cell models via NADH oxidation Visible-Light-Driven Photoelectrocatalytic Degradation of Tetracycline Using Dual Z-Scheme Bi2MoO6/GQDs/TiO2 Heterojunctions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1