CO2 Reduction Reactivity on the SiC Monolayer with Doped Topological Defects

IF 5.3 3区 工程技术 Q2 ENERGY & FUELS Energy & Fuels Pub Date : 2025-03-18 DOI:10.1021/acs.energyfuels.4c05828
Wallace P. Morais, Guilherme J. Inacio, Eduardo A. R. de Almeida, Fábio A. L. de Souza, Fernando N. N. Pansini and Wendel S. Paz*, 
{"title":"CO2 Reduction Reactivity on the SiC Monolayer with Doped Topological Defects","authors":"Wallace P. Morais,&nbsp;Guilherme J. Inacio,&nbsp;Eduardo A. R. de Almeida,&nbsp;Fábio A. L. de Souza,&nbsp;Fernando N. N. Pansini and Wendel S. Paz*,&nbsp;","doi":"10.1021/acs.energyfuels.4c05828","DOIUrl":null,"url":null,"abstract":"<p >This study explores the catalytic properties of boron- and nitrogen-doped 585 extended line defects (585-ELD) in SiC monolayers for the CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). Using Density Functional Theory and <i>ab initio</i> Molecular Dynamics (AIMD) simulations, we analyze the stability, electronic structure, and adsorption characteristics of each doped defect. The results indicate that all doped systems, except for N–N, exhibit significant kinetic and thermodynamic stability, with midgap states that enhance electron availability and catalytic activity. Among the doped structures, the C–B ELD system uniquely balances CO<sub>2</sub> protonation and H<sub>2</sub> desorption, selectively favoring CO<sub>2</sub> reduction over hydrogen evolution. Calculated reaction free energies show that CH<sub>4</sub> formation is possible if the transition from H<sub>2</sub>COH to CH<sub>2</sub> occurs, with a limiting potential (<i>U</i><sub><i>L</i></sub>) of 0.73 V, while strong interactions between H<sub>2</sub>COH and the surface make CH<sub>3</sub>OH formation energetically challenging. These findings position the C–B ELD SiC system as a promising candidate for efficient and selective CO<sub>2</sub> conversion, enabling the formation of valuable hydrocarbons and oxygenates through effective charge transfer and controlled reaction pathways.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"39 12","pages":"5767–5777 5767–5777"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.energyfuels.4c05828","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c05828","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the catalytic properties of boron- and nitrogen-doped 585 extended line defects (585-ELD) in SiC monolayers for the CO2 reduction reaction (CO2RR). Using Density Functional Theory and ab initio Molecular Dynamics (AIMD) simulations, we analyze the stability, electronic structure, and adsorption characteristics of each doped defect. The results indicate that all doped systems, except for N–N, exhibit significant kinetic and thermodynamic stability, with midgap states that enhance electron availability and catalytic activity. Among the doped structures, the C–B ELD system uniquely balances CO2 protonation and H2 desorption, selectively favoring CO2 reduction over hydrogen evolution. Calculated reaction free energies show that CH4 formation is possible if the transition from H2COH to CH2 occurs, with a limiting potential (UL) of 0.73 V, while strong interactions between H2COH and the surface make CH3OH formation energetically challenging. These findings position the C–B ELD SiC system as a promising candidate for efficient and selective CO2 conversion, enabling the formation of valuable hydrocarbons and oxygenates through effective charge transfer and controlled reaction pathways.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺杂拓扑缺陷的SiC单层上CO2还原反应性
本研究探讨了SiC单层中掺杂硼和氮的585延长线缺陷(585- eld)对CO2还原反应(CO2RR)的催化性能。利用密度泛函理论和从头算分子动力学(AIMD)模拟,我们分析了每种掺杂缺陷的稳定性、电子结构和吸附特性。结果表明,除N-N外,所有掺杂体系均表现出显著的动力学和热力学稳定性,中间间隙态增强了电子可用性和催化活性。在掺杂结构中,C-B ELD体系独特地平衡了CO2质子化和H2脱附,选择性地倾向于CO2还原而不是氢气析出。计算的反应自由能表明,如果发生H2COH到CH2的转变,CH4的生成是可能的,其极限电位(UL)为0.73 V,而H2COH与表面之间的强相互作用使得CH3OH的生成在能量上具有挑战性。这些发现将C-B ELD SiC体系定位为高效和选择性CO2转化的有前途的候选者,通过有效的电荷转移和受控的反应途径,能够形成有价值的碳氢化合物和含氧化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Editorial Masthead Issue Publication Information Engineering Vertically Aligned MoS2 Nanosheets on Porous Carbon Support for Accelerated Reaction Kinetics in Lithium–Sulfur Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1