A Toxic Euphemism Detection framework for online social network based on Semantic Contrastive Learning and dual channel knowledge augmentation

IF 6.9 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Processing & Management Pub Date : 2025-03-26 DOI:10.1016/j.ipm.2025.104143
Gang Zhou , Haizhou Wang , Di Jin , Wenxian Wang , Shuyu Jiang , Rui Tang , Xingshu Chen
{"title":"A Toxic Euphemism Detection framework for online social network based on Semantic Contrastive Learning and dual channel knowledge augmentation","authors":"Gang Zhou ,&nbsp;Haizhou Wang ,&nbsp;Di Jin ,&nbsp;Wenxian Wang ,&nbsp;Shuyu Jiang ,&nbsp;Rui Tang ,&nbsp;Xingshu Chen","doi":"10.1016/j.ipm.2025.104143","DOIUrl":null,"url":null,"abstract":"<div><div>For real-time content moderation systems, detecting toxic euphemisms remains a significant challenge due to the lack of available annotated datasets and the ability to deeply identify euphemistic toxicity. In this paper, we proposed the TED-SCL framework (Toxic Euphemism Detection based on Semantic Contrastive Learning) to solve these problems. Firstly, we collected nearly 8 million comments and constructed a toxic euphemism dataset (TE-Dataset), which contains 18,971 comments, covering six topics and 424 PTETs (Potential Toxic Euphemism Terms). Next, we employed contrastive learning to separate toxic euphemism samples from harmless ones in semantic space and enhance the model’s ability to capture subtle differences. Lastly, we utilized a dual channel knowledge augmentation module to integrate background knowledge with toxic comments and improve the identification of toxic euphemisms. Experimental results demonstrate that TED-SCL outperforms existing SOTA in toxic euphemism detection tasks, achieving accuracy of 93.94%, recall of 93.36%, and F1 score of 93.23%. Furthermore, TED-SCL demonstrates better generalization, zero-shot capability, and greater robustness on different topics and datasets, which provides a new way for real-time content moderation systems to detect euphemistic and implicit toxicity effectively.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 4","pages":"Article 104143"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325000846","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

For real-time content moderation systems, detecting toxic euphemisms remains a significant challenge due to the lack of available annotated datasets and the ability to deeply identify euphemistic toxicity. In this paper, we proposed the TED-SCL framework (Toxic Euphemism Detection based on Semantic Contrastive Learning) to solve these problems. Firstly, we collected nearly 8 million comments and constructed a toxic euphemism dataset (TE-Dataset), which contains 18,971 comments, covering six topics and 424 PTETs (Potential Toxic Euphemism Terms). Next, we employed contrastive learning to separate toxic euphemism samples from harmless ones in semantic space and enhance the model’s ability to capture subtle differences. Lastly, we utilized a dual channel knowledge augmentation module to integrate background knowledge with toxic comments and improve the identification of toxic euphemisms. Experimental results demonstrate that TED-SCL outperforms existing SOTA in toxic euphemism detection tasks, achieving accuracy of 93.94%, recall of 93.36%, and F1 score of 93.23%. Furthermore, TED-SCL demonstrates better generalization, zero-shot capability, and greater robustness on different topics and datasets, which provides a new way for real-time content moderation systems to detect euphemistic and implicit toxicity effectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语义对比学习和双通道知识增强的在线社交网络有毒委婉语检测框架
对于实时内容审核系统,由于缺乏可用的注释数据集和深入识别委婉语毒性的能力,检测有毒委婉语仍然是一个重大挑战。本文提出了基于语义对比学习的有毒委婉语检测(TED-SCL)框架来解决这些问题。首先,我们收集了近800万条评论,构建了一个有毒委婉语数据集(TE-Dataset),该数据集包含6个主题和424个PTETs(潜在有毒委婉语),共18971条评论。接下来,我们使用对比学习在语义空间中分离有毒委婉语样本和无害委婉语样本,并增强模型捕捉细微差异的能力。最后,我们利用双通道知识增强模块,将背景知识与有毒评论相结合,提高有毒委婉语的识别能力。实验结果表明,TED-SCL在毒性委婉语检测任务中优于现有的SOTA,准确率为93.94%,召回率为93.36%,F1得分为93.23%。此外,TED-SCL在不同主题和数据集上表现出更好的泛化、零攻击能力和更强的鲁棒性,这为实时内容审核系统有效检测委婉语和隐含毒性提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
期刊最新文献
PrQAC : Prompting LLaMA3 with question-aware image captions and answer candidates for knowledge-based VQA Reevaluating zero-shot information extraction: Sampling bias, prompting transferability and sensitivity in large language models Modality augmentation and task-aware dual-modal LoRAs for multi-task multimodal federated learning Dual-stream spatiotemporal graph convolutional networks for EEG-based human emotion recognition Grouping-enhanced personalization for federated recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1