Self-activated oxophilic surface of porous molybdenum carbide nanosheets promotes hydrogen evolution activity in alkaline environment

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-03-23 DOI:10.1016/j.jcis.2025.137423
Yong Li , Weining Song , Teng Gai , Lipeng Wang , Zhen Li , Peng He , Qi Liu , Lawrence Yoon Suk Lee
{"title":"Self-activated oxophilic surface of porous molybdenum carbide nanosheets promotes hydrogen evolution activity in alkaline environment","authors":"Yong Li ,&nbsp;Weining Song ,&nbsp;Teng Gai ,&nbsp;Lipeng Wang ,&nbsp;Zhen Li ,&nbsp;Peng He ,&nbsp;Qi Liu ,&nbsp;Lawrence Yoon Suk Lee","doi":"10.1016/j.jcis.2025.137423","DOIUrl":null,"url":null,"abstract":"<div><div>Molybdenum carbides are promising alternatives to Pt-based catalysts for the hydrogen evolution reaction (HER) due to their similar <em>d</em>-band electronic configuration. Notably, Mo<sub>x</sub>C exhibits superior HER kinetics in alkaline media compared to acidic conditions, contrasting with Pt-based catalysts. Herein, we present 3D porous β-Mo<sub>2</sub>C nanosheets, achieving an overpotential of 111 mV at 10 mA cm<sup>−2</sup> in 1 M KOH, significantly lower than in acidic environments. Simulations on pristine Mo<sub>2</sub>C surface reveal that water dissociation poses a higher energy barrier in alkaline media, suggesting that crystal structure alone does not dictate kinetics. <em>Operando</em> attenuated total reflection surface-enhanced infrared absorption spectroscopy shows that Mo<sub>2</sub>C activates interfacial water, generating liquid-like and free water, and facilitates hydroxyl species adsorption, reducing activation energy to below 38.43 ± 0.19 kJ/mol. Our findings on the self-activation effect offer insights into the HER mechanism of Mo-based electrocatalysts and guide the design of highly active HER catalysts.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"691 ","pages":"Article 137423"},"PeriodicalIF":9.7000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725008148","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Molybdenum carbides are promising alternatives to Pt-based catalysts for the hydrogen evolution reaction (HER) due to their similar d-band electronic configuration. Notably, MoxC exhibits superior HER kinetics in alkaline media compared to acidic conditions, contrasting with Pt-based catalysts. Herein, we present 3D porous β-Mo2C nanosheets, achieving an overpotential of 111 mV at 10 mA cm−2 in 1 M KOH, significantly lower than in acidic environments. Simulations on pristine Mo2C surface reveal that water dissociation poses a higher energy barrier in alkaline media, suggesting that crystal structure alone does not dictate kinetics. Operando attenuated total reflection surface-enhanced infrared absorption spectroscopy shows that Mo2C activates interfacial water, generating liquid-like and free water, and facilitates hydroxyl species adsorption, reducing activation energy to below 38.43 ± 0.19 kJ/mol. Our findings on the self-activation effect offer insights into the HER mechanism of Mo-based electrocatalysts and guide the design of highly active HER catalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多孔碳化钼纳米片的自活化亲氧表面促进了碱性环境下的析氢活性
碳化钼由于其相似的 d 波段电子构型,在氢进化反应(HER)中有望成为铂基催化剂的替代品。值得注意的是,与铂基催化剂相比,碳化钼在碱性介质中表现出更优越的氢进化反应动力学。在此,我们提出了三维多孔β-Mo2C纳米片,在1 M KOH中,10 mA cm-2的过电位为111 mV,明显低于酸性环境中的过电位。对原始 Mo2C 表面的模拟显示,水解离在碱性介质中构成了更高的能量障碍,这表明晶体结构本身并不决定动力学。运算衰减全反射表面增强红外吸收光谱显示,Mo2C 能激活界面水,生成液态水和自由水,并促进羟基物种的吸附,从而将活化能降低到 38.43 ± 0.19 kJ/mol 以下。我们关于自活化效应的研究结果有助于深入了解 Mo 基电催化剂的 HER 机理,并为设计高活性 HER 催化剂提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
An interfacial layer constructed by in situ polymerizing trimethyl phosphate and ethylene carbonate enabling durable solid-state lithium metal batteries. Structural coupling of Mg-intercalated bilayer and monolayer V2O5 for high-stability and high-capacity aqueous zinc-ion batteries. Harvesting electricity from the multiple dynamic processes of water through the hierarchical structure of wood utilized for water transport. Site-selective alkaline metal ions electrochemical storage in porphyrin-based hydrogen-bonded organic framework. Crystalline boron-boosted Fenton-like activation of persulfate by carbon-coated nano zero-valent iron for efficient degradation of tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1