Decoding Brain Signals in a Neuromorphic Framework for a Personalized Adaptive Control of Human Prosthetics.

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2025-03-14 DOI:10.3390/biomimetics10030183
Georgi Rusev, Svetlozar Yordanov, Simona Nedelcheva, Alexander Banderov, Fabien Sauter-Starace, Petia Koprinkova-Hristova, Nikola Kasabov
{"title":"Decoding Brain Signals in a Neuromorphic Framework for a Personalized Adaptive Control of Human Prosthetics.","authors":"Georgi Rusev, Svetlozar Yordanov, Simona Nedelcheva, Alexander Banderov, Fabien Sauter-Starace, Petia Koprinkova-Hristova, Nikola Kasabov","doi":"10.3390/biomimetics10030183","DOIUrl":null,"url":null,"abstract":"<p><p>Current technological solutions for Brain-machine Interfaces (BMI) achieve reasonable accuracy, but most systems are large in size, power consuming and not auto-adaptive. This work addresses the question whether current neuromorphic technologies could resolve these problems? The paper proposes a novel neuromorphic framework of a BMI system for prosthetics control via decoding Electro Cortico-Graphic (ECoG) brain signals. It includes a three-dimensional spike timing neural network (3D-SNN) for brain signals features extraction and an on-line trainable recurrent reservoir structure (Echo state network (ESN)) for Motor Control Decoding (MCD). A software system, written in Python using NEST Simulator SNN library is described. It is able to adapt continuously in real time in supervised or unsupervised mode. The proposed approach was tested on several experimental data sets acquired from a tetraplegic person. First simulation results are encouraging, showing also the need for a further improvement via multiple hyper-parameters tuning. Its future implementation on a neuromorphic hardware platform that is smaller in size and significantly less power consuming is discussed too.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940436/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10030183","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Current technological solutions for Brain-machine Interfaces (BMI) achieve reasonable accuracy, but most systems are large in size, power consuming and not auto-adaptive. This work addresses the question whether current neuromorphic technologies could resolve these problems? The paper proposes a novel neuromorphic framework of a BMI system for prosthetics control via decoding Electro Cortico-Graphic (ECoG) brain signals. It includes a three-dimensional spike timing neural network (3D-SNN) for brain signals features extraction and an on-line trainable recurrent reservoir structure (Echo state network (ESN)) for Motor Control Decoding (MCD). A software system, written in Python using NEST Simulator SNN library is described. It is able to adapt continuously in real time in supervised or unsupervised mode. The proposed approach was tested on several experimental data sets acquired from a tetraplegic person. First simulation results are encouraging, showing also the need for a further improvement via multiple hyper-parameters tuning. Its future implementation on a neuromorphic hardware platform that is smaller in size and significantly less power consuming is discussed too.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在神经形态框架中解码脑信号,用于人体假肢的个性化自适应控制。
目前的脑机接口(BMI)技术解决方案可以达到合理的精度,但大多数系统体积庞大、耗电量大,而且不能自动适应。这项工作要解决的问题是,当前的神经形态技术能否解决这些问题?本文提出了一种新颖的神经形态框架,即通过解码脑皮质图谱(ECoG)信号来控制假肢的 BMI 系统。它包括一个用于脑信号特征提取的三维尖峰定时神经网络(3D-SNN)和一个用于电机控制解码(MCD)的在线可训练递归水库结构(回声状态网络(ESN))。本文介绍了使用 NEST Simulator SNN 库以 Python 编写的软件系统。该系统能够在有监督或无监督模式下实时不断地进行调整。我们在从一名四肢瘫痪者身上获取的多个实验数据集上对所提出的方法进行了测试。首次模拟结果令人鼓舞,同时也表明需要通过多个超参数调整来进一步改进。此外,还讨论了未来在体积更小、功耗更低的神经形态硬件平台上的实施方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
CQLHBA: Node Coverage Optimization Using Chaotic Quantum-Inspired Leader Honey Badger Algorithm. Comparative Investigations on Hydrodynamic Performance of Active and Passive Tails of Undulating Swimmers. A Fluid Dynamics-Model System for Advancing Tissue Engineering and Cancer Research Studies: Biological Assessment of the Innovative BioAxFlow Dynamic Culture Bioreactor. Additively Manufactured Dragonfly-Inspired Wings for Bio-Faithful Flapping MAV Development. Editorial for Special Issue on Biomimetic Adaptive Buildings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1