Chusheng Huang, Lipeng Li, Hailong Deng, Jincheng Su, Qingjun Wei, Ying He, Lei Xian
{"title":"Exploring miR-3148's impact on Krüppel-like factor 6-driven mitophagy and apoptosis in myocardial ischemic injury.","authors":"Chusheng Huang, Lipeng Li, Hailong Deng, Jincheng Su, Qingjun Wei, Ying He, Lei Xian","doi":"10.25259/Cytojournal_209_2024","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Myocardial infarction (MI) is a leading cause of death worldwide, accounting for millions of fatalities annually. The injury and repair of cardiomyocytes are closely associated with the changes in gene expression. MicroRNAs could serve as a potential target for MI treatment. This work aims to investigate the role of miR-3148 in mitochondrial dynamics during acute MI (AMI) with a specific focus on its regulatory mechanisms in mitophagy and apoptosis, which could reveal potential therapeutic targets for AMI treatment.</p><p><strong>Material and methods: </strong>MiR-3148 levels in patients with AMI and experimental models were measured to assess the effects of miR-3148 on cardiomyocyte viability under oxygen and glucose deprivation (OGD). The present investigation involved monitoring mitophagy markers, including PTEN-induced kinase 1 (PINK1), parkin RBR E3 ubiquitin-protein ligase (Parkin), Beclin1, and microtubule-associated protein 1A/1B light chain 3 II/I (LC3 II/I) ratio, as well as apoptotic markers such as cysteine-aspartic acid protease (Caspase) 9, Caspase 3, and cytochrome C (Cyt C). In addition, Krüppel-like factor 6 (KLF6) was examined as a target of miR-3148.</p><p><strong>Results: </strong>MiR-3148 was significantly elevated in patients with AMI and models. MiR-3148 overexpression reduced cardiomyocyte viability, whereas miR-3148 knockdown protected against OGD injury. The inhibition of miR-3148 activated mitophagy, as shown by the increased PINK1, Parkin, Beclin1 levels, and LC3 II/I ratios, and reduced sequestosome 1 (p62), and apoptotic markers levels. MiR-3148 directly targeted KLF6, reducing its expression. The suppression of KLF6 aggravated OGD injury by disrupting PINK1/Parkin-mediated mitophagy and enhancing apoptosis. Attenuating KLF6 expression reversed the protective effects of miR-3148 inhibition, indicating reciprocal regulation.</p><p><strong>Conclusion: </strong>In myocardial ischemic injury, miR-3148 modulates PINK1/Parkin-mediated mitophagy and apoptosis through KLF6 regulation. This finding highlights miR-3148 as a key factor in the pathogenesis of AMI and as a potential therapeutic target.</p>","PeriodicalId":49082,"journal":{"name":"Cytojournal","volume":"22 ","pages":"19"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11932976/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytojournal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.25259/Cytojournal_209_2024","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Myocardial infarction (MI) is a leading cause of death worldwide, accounting for millions of fatalities annually. The injury and repair of cardiomyocytes are closely associated with the changes in gene expression. MicroRNAs could serve as a potential target for MI treatment. This work aims to investigate the role of miR-3148 in mitochondrial dynamics during acute MI (AMI) with a specific focus on its regulatory mechanisms in mitophagy and apoptosis, which could reveal potential therapeutic targets for AMI treatment.
Material and methods: MiR-3148 levels in patients with AMI and experimental models were measured to assess the effects of miR-3148 on cardiomyocyte viability under oxygen and glucose deprivation (OGD). The present investigation involved monitoring mitophagy markers, including PTEN-induced kinase 1 (PINK1), parkin RBR E3 ubiquitin-protein ligase (Parkin), Beclin1, and microtubule-associated protein 1A/1B light chain 3 II/I (LC3 II/I) ratio, as well as apoptotic markers such as cysteine-aspartic acid protease (Caspase) 9, Caspase 3, and cytochrome C (Cyt C). In addition, Krüppel-like factor 6 (KLF6) was examined as a target of miR-3148.
Results: MiR-3148 was significantly elevated in patients with AMI and models. MiR-3148 overexpression reduced cardiomyocyte viability, whereas miR-3148 knockdown protected against OGD injury. The inhibition of miR-3148 activated mitophagy, as shown by the increased PINK1, Parkin, Beclin1 levels, and LC3 II/I ratios, and reduced sequestosome 1 (p62), and apoptotic markers levels. MiR-3148 directly targeted KLF6, reducing its expression. The suppression of KLF6 aggravated OGD injury by disrupting PINK1/Parkin-mediated mitophagy and enhancing apoptosis. Attenuating KLF6 expression reversed the protective effects of miR-3148 inhibition, indicating reciprocal regulation.
Conclusion: In myocardial ischemic injury, miR-3148 modulates PINK1/Parkin-mediated mitophagy and apoptosis through KLF6 regulation. This finding highlights miR-3148 as a key factor in the pathogenesis of AMI and as a potential therapeutic target.
期刊介绍:
The CytoJournal is an open-access peer-reviewed journal committed to publishing high-quality articles in the field of Diagnostic Cytopathology including Molecular aspects. The journal is owned by the Cytopathology Foundation and published by the Scientific Scholar.