Smart gel polymer electrolytes enlightening high safety and long life sodium ion batteries

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-03-26 DOI:10.1038/s41467-025-57964-7
Li Du, Gaojie Xu, Chenghao Sun, Yu-Han Zhang, Huanrui Zhang, Tiantian Dong, Lang Huang, Jun Ma, Fu Sun, Chuanchuan Li, Xiangchun Zhuang, Shenghang Zhang, Jiedong Li, Bin Xie, Jinzhi Wang, Jingwen Zhao, Jiangwei Ju, Zhiwei Hu, Fan-Hsiu Chang, Chang-Yang Kuo, Chien-Te Chen, André Hilger, Ingo Manke, Shanmu Dong, Guanglei Cui
{"title":"Smart gel polymer electrolytes enlightening high safety and long life sodium ion batteries","authors":"Li Du, Gaojie Xu, Chenghao Sun, Yu-Han Zhang, Huanrui Zhang, Tiantian Dong, Lang Huang, Jun Ma, Fu Sun, Chuanchuan Li, Xiangchun Zhuang, Shenghang Zhang, Jiedong Li, Bin Xie, Jinzhi Wang, Jingwen Zhao, Jiangwei Ju, Zhiwei Hu, Fan-Hsiu Chang, Chang-Yang Kuo, Chien-Te Chen, André Hilger, Ingo Manke, Shanmu Dong, Guanglei Cui","doi":"10.1038/s41467-025-57964-7","DOIUrl":null,"url":null,"abstract":"<p>The overall performance of sodium-ion batteries, particularly regarding safety and cycle life, remains below expectations due to severe degradation of electrode materials and the electrode/electrolyte interphase. Herein, we develop a smart gel polymer electrolyte for hard carbon||NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> batteries through the in situ radical polymerization of a cyanoethylurea-containing methacrylate monomer and an isocyanate-based methacrylate monomer in conventional NaPF<sub>6</sub>-carbonate-based electrolytes. We demonstrate that the smart gel polymer electrolyte facilitates the formation of robust electrode/electrolyte interphase layers, thus improving the thermal and chem-electrochemical stability of the electrodes. When the temperature exceeds 120 °C, the in situ formed gel polymer electrolyte undergoes further crosslinking through nucleophilic addition reactions between urea and isocyanate motifs. This additional crosslinking blocks ion transportation and inhibits crosstalk effects, thus boosting the safety of pouch-type hard carbon||NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> batteries. Moreover, the smart gel polymer electrolyte enables hard carbon||NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> full cells to achieve improved cycle life even at the elevated temperature of 50 °C. The design philosophy behind the development of in situ formed smart gel polymer electrolytes offers valuable guidance for creating high-safety, long-life, and sustainable sodium-ion batteries.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"10 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57964-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The overall performance of sodium-ion batteries, particularly regarding safety and cycle life, remains below expectations due to severe degradation of electrode materials and the electrode/electrolyte interphase. Herein, we develop a smart gel polymer electrolyte for hard carbon||NaNi1/3Fe1/3Mn1/3O2 batteries through the in situ radical polymerization of a cyanoethylurea-containing methacrylate monomer and an isocyanate-based methacrylate monomer in conventional NaPF6-carbonate-based electrolytes. We demonstrate that the smart gel polymer electrolyte facilitates the formation of robust electrode/electrolyte interphase layers, thus improving the thermal and chem-electrochemical stability of the electrodes. When the temperature exceeds 120 °C, the in situ formed gel polymer electrolyte undergoes further crosslinking through nucleophilic addition reactions between urea and isocyanate motifs. This additional crosslinking blocks ion transportation and inhibits crosstalk effects, thus boosting the safety of pouch-type hard carbon||NaNi1/3Fe1/3Mn1/3O2 batteries. Moreover, the smart gel polymer electrolyte enables hard carbon||NaNi1/3Fe1/3Mn1/3O2 full cells to achieve improved cycle life even at the elevated temperature of 50 °C. The design philosophy behind the development of in situ formed smart gel polymer electrolytes offers valuable guidance for creating high-safety, long-life, and sustainable sodium-ion batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能凝胶聚合物电解质开启高安全性和长寿命钠离子电池
由于电极材料和电极/电解质界面的严重退化,钠离子电池的整体性能,特别是在安全性和循环寿命方面,仍然低于预期。在此,我们通过在传统的napf6 -碳酸基电解质中原位自由基聚合含有氰乙基脲的甲基丙烯酸酯单体和基于异氰酸酯的甲基丙烯酸酯单体,开发了一种用于硬碳b|纳米1/ 3fe1 / 3mn1 / 3o2电池的智能凝胶聚合物电解质。我们证明了智能凝胶聚合物电解质有助于形成坚固的电极/电解质间相层,从而提高了电极的热稳定性和电化学稳定性。当温度超过120℃时,原位形成的凝胶聚合物电解质通过尿素和异氰酸酯基序之间的亲核加成反应进一步交联。这种额外的交联阻断了离子运输并抑制了串扰效应,从而提高了袋型硬碳||NaNi1/3Fe1/3Mn1/3O2电池的安全性。此外,智能凝胶聚合物电解质使硬碳||NaNi1/3Fe1/3Mn1/3O2充满电池即使在50°C的高温下也能实现改善的循环寿命。原位形成的智能凝胶聚合物电解质的设计理念为创造高安全性、长寿命和可持续发展的钠离子电池提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
azobisisobutyronitrile
阿拉丁
dichloromethane
阿拉丁
chloroform-d
阿拉丁
N-Methyl-2-pyrrolidone
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Alleviating non-radiative losses in organic solar cells through side-chain regulation of low-bandgap non-fullerene acceptors. Regular-wrinkling tunable MXene lattice for electromagnetic interference shielding Integration of large vision language models for efficient post-disaster damage assessment and reporting Decoupling slab gliding and lattice contraction in Na layered oxides to enable high-voltage Na-ion batteries Structural basis for late maturation steps of mitochondrial respiratory chain complex IV within the human respirasome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1