Effects of Nuclear Motion on the Photoinduced Interfacial Charge Transfer Dynamics at a NiO/P1 Photocathode

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry C Pub Date : 2025-03-27 DOI:10.1021/acs.jpcc.4c08758
Titus de Haas, Kaijian Zhu, Joannes M. van der Sterre, Yusen Luo, Guido Mul, Francesco Buda, Annemarie Huijser
{"title":"Effects of Nuclear Motion on the Photoinduced Interfacial Charge Transfer Dynamics at a NiO/P1 Photocathode","authors":"Titus de Haas, Kaijian Zhu, Joannes M. van der Sterre, Yusen Luo, Guido Mul, Francesco Buda, Annemarie Huijser","doi":"10.1021/acs.jpcc.4c08758","DOIUrl":null,"url":null,"abstract":"The performance of dye-sensitized photoelectrochemical cells is presently limited by the photocathode component. Here, we investigate the impact of nuclear dynamics on the photoinduced charge separation of the benchmark NiO/P1 system (P1 = 4-(bis-4-(5-(2,2-dicyano-vinyl)-thiophene-2-yl)-phenyl-amino)-benzoic acid). Transient absorption (TA) studies in aqueous environments with different viscosities show that photoinduced hole injection either proceeds ultrafast (<100 fs) or in a sub-ps time window. We assign the fastest component to a surface species strongly coupled to the NiO. Interestingly, the slower injection component and charge recombination are slowed down considerably in more viscous media. Quantum-classical dynamics simulations of a system with the dye standing perpendicular to the surface yield an injection lifetime remarkably close to the slow component from kinetic modeling of the TA results. Simulations including nuclear thermal motion yield a 2-fold increase in hole transfer rate compared to simulations on fixed nuclei, highlighting the role of nuclear motion and providing new design principles for dye-sensitized photocathodes.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"11 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c08758","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of dye-sensitized photoelectrochemical cells is presently limited by the photocathode component. Here, we investigate the impact of nuclear dynamics on the photoinduced charge separation of the benchmark NiO/P1 system (P1 = 4-(bis-4-(5-(2,2-dicyano-vinyl)-thiophene-2-yl)-phenyl-amino)-benzoic acid). Transient absorption (TA) studies in aqueous environments with different viscosities show that photoinduced hole injection either proceeds ultrafast (<100 fs) or in a sub-ps time window. We assign the fastest component to a surface species strongly coupled to the NiO. Interestingly, the slower injection component and charge recombination are slowed down considerably in more viscous media. Quantum-classical dynamics simulations of a system with the dye standing perpendicular to the surface yield an injection lifetime remarkably close to the slow component from kinetic modeling of the TA results. Simulations including nuclear thermal motion yield a 2-fold increase in hole transfer rate compared to simulations on fixed nuclei, highlighting the role of nuclear motion and providing new design principles for dye-sensitized photocathodes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核运动对NiO/P1光电阴极光致界面电荷转移动力学的影响
目前,染料敏化光电化学电池的性能受到光电阴极组件的限制。在此,我们研究了核动力学对基准 NiO/P1 体系(P1 = 4-(双-4-(5-(2,2-二氰基乙烯基)-噻吩-2-基)-苯基氨基)-苯甲酸)光诱导电荷分离的影响。在不同粘度的水环境中进行的瞬态吸收(TA)研究表明,光诱导空穴注入要么进行得超快(<100 fs),要么在亚秒级的时间窗口内进行。我们将速度最快的部分归因于与氧化镍强耦合的表面物种。有趣的是,在粘性更强的介质中,较慢的注入成分和电荷重组的速度大大减慢。对染料垂直于表面的系统进行量子经典动力学模拟,结果显示注入寿命非常接近 TA 结果动力学模型中的慢速成分。与固定核模拟相比,包含核热运动的模拟得出的空穴传输速率提高了 2 倍,突出了核运动的作用,并为染料敏化光电阴极提供了新的设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Issue Editorial Masthead Issue Publication Information A Review of 2025 at The Journal of Physical Chemistry C Enhancing ZnMgO Ferroelectric Properties by Defect Engineering: First-Principles and Experimental Study Efficient Hydrogenation of Phenanthrene Enabled by d-Orbital Restructuring: A DFT Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1