Dual-Functional Heterogeneous Rh–Sb Alloy Nanomaterials Coupling Electrochemical Hydrazine Oxidation and Hydrogen Evolution

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2025-03-15 DOI:10.1021/acsanm.5c00443
Wenjing Tian, Hui-Zi Huang, Di Liu, Zhejiaji Zhu, Junwen Zhou and An-Xiang Yin*, 
{"title":"Dual-Functional Heterogeneous Rh–Sb Alloy Nanomaterials Coupling Electrochemical Hydrazine Oxidation and Hydrogen Evolution","authors":"Wenjing Tian,&nbsp;Hui-Zi Huang,&nbsp;Di Liu,&nbsp;Zhejiaji Zhu,&nbsp;Junwen Zhou and An-Xiang Yin*,&nbsp;","doi":"10.1021/acsanm.5c00443","DOIUrl":null,"url":null,"abstract":"<p >The overall hydrazine splitting (OHzS, N<sub>2</sub>H<sub>4</sub> → N<sub>2</sub> + 2H<sub>2</sub>) reaction, which is integrated by electrocatalytic hydrazine oxidation reaction (HzOR) and hydrogen evolution reaction (HER), provides an energy-efficient alternative to conventional overall water splitting (OWS) for sustainable hydrogen production. Herein, we present the controlled synthesis of Rh<sub>1</sub>Sb<sub>1</sub>@Rh–Sb nanoflowers (NFs) that comprise intermetallic Rh<sub>1</sub>Sb<sub>1</sub> nanodendrite cores and ultrathin Rh–Sb random alloy nanosheet shells. The alloying of Sb enhances both HzOR and HER performances of Rh nanocatalysts through modulation of growth mechanisms, morphological evolution, and surface electronic configurations. Remarkably, a symmetrical OHzS electrolyzer employing Rh<sub>1</sub>Sb<sub>1</sub>@Rh–Sb NFs as bifunctional catalysts for both electrodes achieves the current densities of 100 and 500 mA cm<sup>–2</sup> at cell voltages of merely 0.216 and 0.700 V (without <i>iR</i> compensation), respectively, corresponding to 88.1% and 71.9% reductions in electricity consumption compared to alkaline OWS systems. Furthermore, a rechargeable zinc–hydrazine (Zn–Hz) battery using Rh<sub>1</sub>Sb<sub>1</sub>@Rh–Sb NFs as the positive electrode exhibits high energy efficiency, power density, and durability. The prototype device, integrating a photovoltaic cell, a Zn–Hz battery, and an OHzS cell, demonstrates the potential for efficient and simultaneous solar energy storage, hydrazine pollutant remediation, and hydrogen generation, offering a promising avenue for practical applications.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 12","pages":"6168–6178 6168–6178"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c00443","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The overall hydrazine splitting (OHzS, N2H4 → N2 + 2H2) reaction, which is integrated by electrocatalytic hydrazine oxidation reaction (HzOR) and hydrogen evolution reaction (HER), provides an energy-efficient alternative to conventional overall water splitting (OWS) for sustainable hydrogen production. Herein, we present the controlled synthesis of Rh1Sb1@Rh–Sb nanoflowers (NFs) that comprise intermetallic Rh1Sb1 nanodendrite cores and ultrathin Rh–Sb random alloy nanosheet shells. The alloying of Sb enhances both HzOR and HER performances of Rh nanocatalysts through modulation of growth mechanisms, morphological evolution, and surface electronic configurations. Remarkably, a symmetrical OHzS electrolyzer employing Rh1Sb1@Rh–Sb NFs as bifunctional catalysts for both electrodes achieves the current densities of 100 and 500 mA cm–2 at cell voltages of merely 0.216 and 0.700 V (without iR compensation), respectively, corresponding to 88.1% and 71.9% reductions in electricity consumption compared to alkaline OWS systems. Furthermore, a rechargeable zinc–hydrazine (Zn–Hz) battery using Rh1Sb1@Rh–Sb NFs as the positive electrode exhibits high energy efficiency, power density, and durability. The prototype device, integrating a photovoltaic cell, a Zn–Hz battery, and an OHzS cell, demonstrates the potential for efficient and simultaneous solar energy storage, hydrazine pollutant remediation, and hydrogen generation, offering a promising avenue for practical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双功能非均相铑sb合金纳米材料耦合电化学联氨氧化和析氢
电催化联氨氧化反应(HzOR)和析氢反应(HER)相结合的整体联氨分解反应(OHzS, N2H4→N2 + 2H2)为传统的整体水分解反应(OWS)的可持续制氢提供了一种节能替代方案。在此,我们提出了Rh1Sb1@Rh -Sb纳米花(NFs)的受控合成,该纳米花由金属间化合物Rh1Sb1纳米枝晶核心和超薄Rh-Sb无规合金纳米片壳组成。Sb的合金化通过调节生长机制、形态演变和表面电子构型来提高Rh纳米催化剂的HzOR和HER性能。值得注意的是,采用Rh1Sb1@Rh -Sb NFs作为双功能催化剂的对称OHzS电解槽在电池电压仅为0.216 V和0.700 V(无iR补偿)时,电流密度分别达到100和500 mA cm-2,与碱性OWS系统相比,耗电量分别降低了88.1%和71.9%。此外,使用Rh1Sb1@Rh -Sb NFs作为正极的可充电锌-肼(Zn-Hz)电池具有高能量效率、功率密度和耐用性。该原型装置集成了一个光伏电池、一个Zn-Hz电池和一个OHzS电池,展示了高效和同步太阳能存储、肼污染物修复和制氢的潜力,为实际应用提供了一条有前途的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Antimony trichloride
阿拉丁
anhydrous ethanol
阿拉丁
ethylene glycol
阿拉丁
potassium hydroxide
阿拉丁
hydrazine hydrate
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Editorial Masthead Issue Editorial Masthead Issue Publication Information Advances in Nanoparticles Assissted CRISPR/Cas Based Biosensors Co3O4 Nanoparticles Decorated with Pd and PdO Nanoparticles for the Reduction of 4-Nitrophenol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1