Ultra-Fast and Facile Fabrication of Turbostratic Holey Graphene and Its Supercapacitor Applications

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2025-03-16 DOI:10.1021/acsanm.5c00180
Niranjan Pandit, Saurav Keshri, Pushpender Singh, T. N. Singh and Anup Kumar Keshri*, 
{"title":"Ultra-Fast and Facile Fabrication of Turbostratic Holey Graphene and Its Supercapacitor Applications","authors":"Niranjan Pandit,&nbsp;Saurav Keshri,&nbsp;Pushpender Singh,&nbsp;T. N. Singh and Anup Kumar Keshri*,&nbsp;","doi":"10.1021/acsanm.5c00180","DOIUrl":null,"url":null,"abstract":"<p >A facile, cost-effective, and scalable method for producing turbostratic holey graphene (tHG) nanosheets has been developed using an age-old atmospheric plasma spray technique. This single-step, residue-free process originates from the hole and simultaneously induces twisting in the graphene layers. The twisting minimizes electronic interactions between the layers, increasing interlayer spacing and significantly enhancing the graphene’s effective specific surface area. The fabricated tHG electrode exhibits the highest specific capacitance of 220.4 F g<sup>–1</sup> at 0.5 A g<sup>–1</sup>, an energy density of 27.54 W h kg<sup>–1</sup>, and a power density of 225 W kg<sup>–1</sup> in the three-electrode system. Furthermore, the electrode exhibits outstanding electrochemical stability, retaining about 92% of its capacitance after 10,000 cycles. These characteristics position the tHG as a highly promising material for next-generation high-performance supercapacitors.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 12","pages":"6052–6062 6052–6062"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c00180","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A facile, cost-effective, and scalable method for producing turbostratic holey graphene (tHG) nanosheets has been developed using an age-old atmospheric plasma spray technique. This single-step, residue-free process originates from the hole and simultaneously induces twisting in the graphene layers. The twisting minimizes electronic interactions between the layers, increasing interlayer spacing and significantly enhancing the graphene’s effective specific surface area. The fabricated tHG electrode exhibits the highest specific capacitance of 220.4 F g–1 at 0.5 A g–1, an energy density of 27.54 W h kg–1, and a power density of 225 W kg–1 in the three-electrode system. Furthermore, the electrode exhibits outstanding electrochemical stability, retaining about 92% of its capacitance after 10,000 cycles. These characteristics position the tHG as a highly promising material for next-generation high-performance supercapacitors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
涡旋层石墨烯的超快速简易制备及其超级电容器应用
利用一种古老的大气等离子体喷涂技术,开发了一种简便、经济、可扩展的生产涡轮多孔石墨烯(tHG)纳米片的方法。这种单步无残留物的工艺从孔开始,同时在石墨烯层中引起扭曲。这种扭曲使层之间的电子相互作用最小化,增加了层间间距,显著提高了石墨烯的有效比表面积。在三电极体系中,制备的tHG电极在0.5 A g-1时的最高比电容为220.4 F - 1,能量密度为27.54 W h kg-1,功率密度为225 W kg-1。此外,电极表现出优异的电化学稳定性,在10,000次循环后保持约92%的电容。这些特性使tHG成为下一代高性能超级电容器的一种非常有前途的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Editorial Masthead Issue Editorial Masthead Issue Publication Information Advances in Nanoparticles Assissted CRISPR/Cas Based Biosensors Co3O4 Nanoparticles Decorated with Pd and PdO Nanoparticles for the Reduction of 4-Nitrophenol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1