Ti3C2Tx/Self-Assembled Monolayer Composite Interface for Enhanced Hole Transport in Inverted Perovskite Solar Cells

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2025-03-14 DOI:10.1021/acsanm.5c00290
Lin Zhang, Jiaxin Guo, Xing Fang, Xuefeng Guan, Menghao Lin and Jie Lin*, 
{"title":"Ti3C2Tx/Self-Assembled Monolayer Composite Interface for Enhanced Hole Transport in Inverted Perovskite Solar Cells","authors":"Lin Zhang,&nbsp;Jiaxin Guo,&nbsp;Xing Fang,&nbsp;Xuefeng Guan,&nbsp;Menghao Lin and Jie Lin*,&nbsp;","doi":"10.1021/acsanm.5c00290","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional transition metal carbide Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>, with its large surface area, excellent conductivity, and abundant surface terminations (T<sub><i>x</i></sub>), has found broad applications in optoelectronic devices. To address issues such as energy level misalignment, low conductivity, and surface defects at the HTL/perovskite interface in inverted perovskite solar cells (p-i-n PSCs), this study proposes an interface passivation strategy based on MXene to regulate the buried interface of NiO<sub><i>x</i></sub>/MeO-2PACz-based p-i-n PSCs. Experimental results show that Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>, when used as an interface passivation layer, increases the work function (WF) of MeO-2PACz, facilitating energy level alignment. The abundant hydroxyl groups (−OH) on the surface of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> undergo continuous hybridization reactions with P atoms, forming strong Ti–O–P covalent bonds that provide an effective pathway for hole transport, thereby reducing charge accumulation at the interface. Additionally, MXene-doped MeO-2PACz was used as a control group to further reveal the dual passivation mechanism of MXene on both the MeO-2PACz and the underlying perovskite interface. Ultimately, compared to PSCs with undoped HTLs, the power conversion efficiency (PCE) of PSCs increased by 6% with HTL doping and by 10.7% with interface passivation. This study expands the application of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> in HTLs and provides a pathway for its use in the fabrication of highly efficient and stable PSCs.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 12","pages":"6144–6155 6144–6155"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c00290","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional transition metal carbide Ti3C2Tx, with its large surface area, excellent conductivity, and abundant surface terminations (Tx), has found broad applications in optoelectronic devices. To address issues such as energy level misalignment, low conductivity, and surface defects at the HTL/perovskite interface in inverted perovskite solar cells (p-i-n PSCs), this study proposes an interface passivation strategy based on MXene to regulate the buried interface of NiOx/MeO-2PACz-based p-i-n PSCs. Experimental results show that Ti3C2Tx, when used as an interface passivation layer, increases the work function (WF) of MeO-2PACz, facilitating energy level alignment. The abundant hydroxyl groups (−OH) on the surface of Ti3C2Tx undergo continuous hybridization reactions with P atoms, forming strong Ti–O–P covalent bonds that provide an effective pathway for hole transport, thereby reducing charge accumulation at the interface. Additionally, MXene-doped MeO-2PACz was used as a control group to further reveal the dual passivation mechanism of MXene on both the MeO-2PACz and the underlying perovskite interface. Ultimately, compared to PSCs with undoped HTLs, the power conversion efficiency (PCE) of PSCs increased by 6% with HTL doping and by 10.7% with interface passivation. This study expands the application of Ti3C2Tx in HTLs and provides a pathway for its use in the fabrication of highly efficient and stable PSCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ti3C2Tx/自组装单层复合界面增强钙钛矿太阳能电池空穴输运
二维过渡金属碳化物Ti3C2Tx以其大的表面积、优异的导电性和丰富的表面末端(Tx)在光电器件中得到了广泛的应用。针对倒置钙钛矿太阳能电池(p-i-n PSCs)中HTL/钙钛矿界面存在的能级错位、低电导率和表面缺陷等问题,本研究提出了一种基于MXene的界面钝化策略来调节NiOx/ meo - 2pacz基p-i-n PSCs的埋藏界面。实验结果表明,Ti3C2Tx作为界面钝化层,增加了MeO-2PACz的功函数(WF),有利于能级对准。Ti3C2Tx表面丰富的羟基(−OH)与P原子发生连续的杂化反应,形成强的Ti-O-P共价键,为空穴传递提供了有效的途径,从而减少了界面处的电荷积累。此外,以MXene掺杂的MeO-2PACz作为对照组,进一步揭示了MXene在MeO-2PACz和底层钙钛矿界面上的双重钝化机制。最终,与未掺杂HTL的PSCs相比,HTL掺杂后的PSCs的功率转换效率提高了6%,界面钝化后的PCE提高了10.7%。本研究拓展了Ti3C2Tx在HTLs中的应用,为其在制备高效稳定的psc提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Issue Editorial Masthead Issue Editorial Masthead Issue Publication Information Advances in Nanoparticles Assissted CRISPR/Cas Based Biosensors Co3O4 Nanoparticles Decorated with Pd and PdO Nanoparticles for the Reduction of 4-Nitrophenol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1