Integrating statistical physics and machine learning for combinatorial optimization

IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2025-03-26 DOI:10.1038/s43588-025-00794-w
{"title":"Integrating statistical physics and machine learning for combinatorial optimization","authors":"","doi":"10.1038/s43588-025-00794-w","DOIUrl":null,"url":null,"abstract":"We introduce free-energy machine (FEM), an efficient and general method for solving combinatorial optimization problems. FEM combines free-energy minimization from statistical physics with gradient-based optimization techniques in machine learning and utilizes parallel computation, outperforming state-of-the-art algorithms and showcasing the synergy of merging statistical physics with machine learning.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 4","pages":"277-278"},"PeriodicalIF":18.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-025-00794-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce free-energy machine (FEM), an efficient and general method for solving combinatorial optimization problems. FEM combines free-energy minimization from statistical physics with gradient-based optimization techniques in machine learning and utilizes parallel computation, outperforming state-of-the-art algorithms and showcasing the synergy of merging statistical physics with machine learning.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合统计物理和机器学习进行组合优化。
本文介绍了求解组合优化问题的一种有效而通用的方法——自由能机(FEM)。FEM将统计物理中的自由能量最小化与机器学习中的基于梯度的优化技术相结合,并利用并行计算,优于最先进的算法,并展示了统计物理与机器学习相结合的协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
AI-guided molecular design with recipes included. The afterlife of 20 million AI chips. Harnessing LLMs to decode genetic perturbations. Improving the balance of trade-offs in multi-objective optimization with quantum computing. Toward a domain-grounded AI collaborator with SciSciGPT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1