Advancing Sustainable Ammonia Production via Solventless, Robust, and Thermally Conductive Absorbents

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2025-03-27 DOI:10.1021/acssuschemeng.4c08837
Tejas Nivarty, William C. Straub, Chinomso E. Onuoha, Michael Manno, Jeffrey H. Schott, Mahdi Malmali, Alon V. McCormick
{"title":"Advancing Sustainable Ammonia Production via Solventless, Robust, and Thermally Conductive Absorbents","authors":"Tejas Nivarty, William C. Straub, Chinomso E. Onuoha, Michael Manno, Jeffrey H. Schott, Mahdi Malmali, Alon V. McCormick","doi":"10.1021/acssuschemeng.4c08837","DOIUrl":null,"url":null,"abstract":"Sorption-based low-pressure green ammonia synthesis using supported metal halide salts enables efficient interconversion between hydrogen and ammonia, allowing the high hydrogen density and well-established transportation network of ammonia to be used for green energy storage. Magnesium chloride supported on silica gel (MgCl<sub>2</sub>/SiO<sub>2</sub>) sorbent has been the subject of much investigation owing to its high capacity, selectivity, and reversibility at temperatures close to reactor conditions; however, MgCl<sub>2</sub>/SiO<sub>2</sub> suffers from low thermal conductivity, which complicates absorber design at larger scales and prolongs absorption–desorption cycle times. We present a scalable, solventless method for supporting MgCl<sub>2</sub> on thermally conductive aluminum fibers (MgCl<sub>2</sub>/Al)─a thermally conductive ammonia sorbent with a high working capacity of ∼220 mg<sub>NH3</sub>/g<sub>absorbent</sub>. Although the solventless synthesis causes variance in initial-cycle pressure drop and capacity, we show that this stabilizes after cycling. The high thermal conductivity of MgCl<sub>2</sub>/Al allows for rapid absorption–desorption cycles, enabling easier scale-up. MgCl<sub>2</sub>/Al also maintains its cyclic capacity up to at least 50 cycles.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"358 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c08837","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sorption-based low-pressure green ammonia synthesis using supported metal halide salts enables efficient interconversion between hydrogen and ammonia, allowing the high hydrogen density and well-established transportation network of ammonia to be used for green energy storage. Magnesium chloride supported on silica gel (MgCl2/SiO2) sorbent has been the subject of much investigation owing to its high capacity, selectivity, and reversibility at temperatures close to reactor conditions; however, MgCl2/SiO2 suffers from low thermal conductivity, which complicates absorber design at larger scales and prolongs absorption–desorption cycle times. We present a scalable, solventless method for supporting MgCl2 on thermally conductive aluminum fibers (MgCl2/Al)─a thermally conductive ammonia sorbent with a high working capacity of ∼220 mgNH3/gabsorbent. Although the solventless synthesis causes variance in initial-cycle pressure drop and capacity, we show that this stabilizes after cycling. The high thermal conductivity of MgCl2/Al allows for rapid absorption–desorption cycles, enabling easier scale-up. MgCl2/Al also maintains its cyclic capacity up to at least 50 cycles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过无溶剂,坚固,导热吸收剂推进可持续氨生产
基于吸附的低压绿色氨合成使用负载型金属卤化物盐,实现氢和氨之间的有效相互转化,允许高氢密度和完善的氨运输网络用于绿色能源储存。二氧化硅(MgCl2/SiO2)吸附剂负载的氯化镁由于其在接近反应器条件下的高容量、选择性和可逆性而成为许多研究的主题;然而,MgCl2/SiO2的导热系数低,这使得吸收体设计在更大的尺度上变得复杂,并且延长了吸收-解吸循环时间。我们提出了一种可扩展的无溶剂方法,用于在导热铝纤维(MgCl2/Al)上负载MgCl2,这是一种导热氨吸附剂,具有高达220 mgNH3/ gabsorbant的高工作容量。虽然无溶剂合成引起初始循环压降和容量的变化,但我们表明循环后这种变化趋于稳定。MgCl2/Al的高导热性允许快速的吸收-解吸循环,从而更容易扩大规模。MgCl2/Al还保持至少50次循环的循环容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Green Manufacturing of Anisotropic MXene/Carboxymethyl Chitosan Aerogels from Renewable Biomass for Multifunctional Wearables Sustainable Self-Healing Thermosetting Polymers from Renewable Carvone-Derived Diepoxides Atomic Molybdenum on Porous N-Doped Carbon Enables Catalytic SEI Engineering for Stable Lithium Storage Identifying the Key Factors for Boosting NiFe-LDH with Optimized Bifunctional HER/OER Activities Urchin-Like Covalent Organic Frameworks with Facilitated Charge Separation and Transfer for NADH-Dependent Photoenzyme-Coupled CO2 Fixation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1