Deep Learning Models Based on Pretreatment MRI and Clinicopathological Data to Predict Responses to Neoadjuvant Systemic Therapy in Triple-Negative Breast Cancer.

IF 4.4 2区 医学 Q1 ONCOLOGY Cancers Pub Date : 2025-03-13 DOI:10.3390/cancers17060966
Zhan Xu, Zijian Zhou, Jong Bum Son, Haonan Feng, Beatriz E Adrada, Tanya W Moseley, Rosalind P Candelaria, Mary S Guirguis, Miral M Patel, Gary J Whitman, Jessica W T Leung, Huong T C Le-Petross, Rania M Mohamed, Bikash Panthi, Deanna L Lane, Huiqin Chen, Peng Wei, Debu Tripathy, Jennifer K Litton, Vicente Valero, Lei Huo, Kelly K Hunt, Anil Korkut, Alastair Thompson, Wei Yang, Clinton Yam, Gaiane M Rauch, Jingfei Ma
{"title":"Deep Learning Models Based on Pretreatment MRI and Clinicopathological Data to Predict Responses to Neoadjuvant Systemic Therapy in Triple-Negative Breast Cancer.","authors":"Zhan Xu, Zijian Zhou, Jong Bum Son, Haonan Feng, Beatriz E Adrada, Tanya W Moseley, Rosalind P Candelaria, Mary S Guirguis, Miral M Patel, Gary J Whitman, Jessica W T Leung, Huong T C Le-Petross, Rania M Mohamed, Bikash Panthi, Deanna L Lane, Huiqin Chen, Peng Wei, Debu Tripathy, Jennifer K Litton, Vicente Valero, Lei Huo, Kelly K Hunt, Anil Korkut, Alastair Thompson, Wei Yang, Clinton Yam, Gaiane M Rauch, Jingfei Ma","doi":"10.3390/cancers17060966","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop deep learning models for predicting the pathologic complete response (pCR) to neoadjuvant systemic therapy (NAST) in patients with triple-negative breast cancer (TNBC) based on pretreatment multiparametric breast MRI and clinicopathological data.</p><p><strong>Methods: </strong>The prospective institutional review board-approved study [NCT02276443] included 282 patients with stage I-III TNBC who had multiparametric breast MRI at baseline and underwent NAST and surgery during 2016-2021. Dynamic contrast-enhanced MRI (DCE), diffusion-weighted imaging (DWI), and clinicopathological data were used for the model development and internal testing. Data from the I-SPY 2 trial (2010-2016) were used for external testing. Four variables with a potential impact on model performance were systematically investigated: 3D model frameworks, tumor volume preprocessing, tumor ROI selection, and data inputs.</p><p><strong>Results: </strong>Forty-eight models with different variable combinations were investigated. The best-performing model in the internal testing dataset used DCE, DWI, and clinicopathological data with the originally contoured tumor volume, the tight bounding box of the tumor mask, and ResNeXt50, and achieved an area under the receiver operating characteristic curve (AUC) of 0.76 (95% CI: 0.60-0.88). The best-performing models in the external testing dataset achieved an AUC of 0.72 (95% CI: 0.57-0.84) using only DCE images (originally contoured tumor volume, enlarged bounding box of tumor mask, and ResNeXt50) and an AUC of 0.72 (95% CI: 0.56-0.86) using only DWI images (originally contoured tumor volume, enlarged bounding box of tumor mask, and ResNet18).</p><p><strong>Conclusions: </strong>We developed 3D deep learning models based on pretreatment data that could predict pCR to NAST in TNBC patients.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"17 6","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11940201/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers17060966","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To develop deep learning models for predicting the pathologic complete response (pCR) to neoadjuvant systemic therapy (NAST) in patients with triple-negative breast cancer (TNBC) based on pretreatment multiparametric breast MRI and clinicopathological data.

Methods: The prospective institutional review board-approved study [NCT02276443] included 282 patients with stage I-III TNBC who had multiparametric breast MRI at baseline and underwent NAST and surgery during 2016-2021. Dynamic contrast-enhanced MRI (DCE), diffusion-weighted imaging (DWI), and clinicopathological data were used for the model development and internal testing. Data from the I-SPY 2 trial (2010-2016) were used for external testing. Four variables with a potential impact on model performance were systematically investigated: 3D model frameworks, tumor volume preprocessing, tumor ROI selection, and data inputs.

Results: Forty-eight models with different variable combinations were investigated. The best-performing model in the internal testing dataset used DCE, DWI, and clinicopathological data with the originally contoured tumor volume, the tight bounding box of the tumor mask, and ResNeXt50, and achieved an area under the receiver operating characteristic curve (AUC) of 0.76 (95% CI: 0.60-0.88). The best-performing models in the external testing dataset achieved an AUC of 0.72 (95% CI: 0.57-0.84) using only DCE images (originally contoured tumor volume, enlarged bounding box of tumor mask, and ResNeXt50) and an AUC of 0.72 (95% CI: 0.56-0.86) using only DWI images (originally contoured tumor volume, enlarged bounding box of tumor mask, and ResNet18).

Conclusions: We developed 3D deep learning models based on pretreatment data that could predict pCR to NAST in TNBC patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于治疗前磁共振成像和临床病理数据的深度学习模型,预测三阴性乳腺癌对新辅助系统疗法的反应
目的:基于预处理多参数乳腺MRI和临床病理数据,建立预测三阴性乳腺癌(TNBC)患者新辅助全身治疗(NAST)病理完全缓解(pCR)的深度学习模型。方法:这项经机构审查委员会批准的前瞻性研究[NCT02276443]纳入了282例I-III期TNBC患者,这些患者在基线时进行了多参数乳房MRI检查,并在2016-2021年期间接受了NAST和手术。动态对比增强MRI (DCE)、弥散加权成像(DWI)和临床病理数据用于模型开发和内部测试。I-SPY 2试验(2010-2016)的数据用于外部测试。系统研究了对模型性能有潜在影响的四个变量:3D模型框架、肿瘤体积预处理、肿瘤ROI选择和数据输入。结果:研究了48个不同变量组合的模型。在内部测试数据集中,表现最好的模型使用了DCE、DWI和临床病理数据,以及原始轮廓的肿瘤体积、肿瘤掩膜的紧密边界盒和ResNeXt50,实现了接受者工作特征曲线下的面积(AUC)为0.76 (95% CI: 0.60-0.88)。外部测试数据集中表现最好的模型仅使用DCE图像(原始轮廓的肿瘤体积,扩大的肿瘤掩膜边界盒和ResNeXt50)的AUC为0.72 (95% CI: 0.57-0.84),仅使用DWI图像(原始轮廓的肿瘤体积,扩大的肿瘤掩膜边界盒和ResNet18)的AUC为0.72 (95% CI: 0.56-0.86)。结论:我们基于预处理数据建立了3D深度学习模型,可以预测TNBC患者的pCR到NAST。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancers
Cancers Medicine-Oncology
CiteScore
8.00
自引率
9.60%
发文量
5371
审稿时长
18.07 days
期刊介绍: Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Outcomes of pPCL Diagnosed Using the IMWG 2021 Consensus Definition: A Retrospective Multicenter Analysis. Predictors of Survival in Patients Aged ≥70 with Glioblastoma: A Time-Dependent Multivariable Analysis. Effects of Tobacco Use on Oral Cancer Screening Algorithm Performance. Differences in Executive Functioning Between Patients with IDH1-Mutant Oligodendroglioma and Astrocytoma Before and After Surgery. Complications of Port-a-Cath Systems: An Institutional Study on Romanian Oncological Patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1