{"title":"Arc-heating actuated active-morphing insect robots.","authors":"Jingyu Che, Xiangyu Yang, Jinzhe Peng, Jingyi Li, Zhiwei Liu, Mingjing Qi","doi":"10.1038/s41467-025-58258-8","DOIUrl":null,"url":null,"abstract":"<p><p>In nature, insects can swiftly move and actively morph to adapt to complex and varied conditions. However, replicating this capability in insect-scale robots requires sophisticated structural designs, which are difficult to achieve at such a small scale without fundamental hardware innovations. This work proposes a coupling mechanism between actuation and morphing by combining an arc-heating actuator and shape memory alloy wires, presenting a fast insect-scale robot (83.4 body lengths per second) capable of active morphing and self-recovery. The arc-heating actuator is designed to provide the kinetic energy and the thermal energy essential for deforming the wires. The robot can compress its body thickness to traverse through a gap of 70% its height smoothly within 2.2 seconds and is amphibious. Furthermore, after enduring pressure 5 million times its weight, the robot is flattened, but fully recovers its original size and performance in just a few seconds.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"3014"},"PeriodicalIF":15.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11950236/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58258-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In nature, insects can swiftly move and actively morph to adapt to complex and varied conditions. However, replicating this capability in insect-scale robots requires sophisticated structural designs, which are difficult to achieve at such a small scale without fundamental hardware innovations. This work proposes a coupling mechanism between actuation and morphing by combining an arc-heating actuator and shape memory alloy wires, presenting a fast insect-scale robot (83.4 body lengths per second) capable of active morphing and self-recovery. The arc-heating actuator is designed to provide the kinetic energy and the thermal energy essential for deforming the wires. The robot can compress its body thickness to traverse through a gap of 70% its height smoothly within 2.2 seconds and is amphibious. Furthermore, after enduring pressure 5 million times its weight, the robot is flattened, but fully recovers its original size and performance in just a few seconds.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.