A Survey of Deep Learning in Sports Applications: Perception, Comprehension, and Decision

Zhonghan Zhao;Wenhao Chai;Shengyu Hao;Wenhao Hu;Guanhong Wang;Shidong Cao;Mingli Song;Jenq-Neng Hwang;Gaoang Wang
{"title":"A Survey of Deep Learning in Sports Applications: Perception, Comprehension, and Decision","authors":"Zhonghan Zhao;Wenhao Chai;Shengyu Hao;Wenhao Hu;Guanhong Wang;Shidong Cao;Mingli Song;Jenq-Neng Hwang;Gaoang Wang","doi":"10.1109/TVCG.2025.3554801","DOIUrl":null,"url":null,"abstract":"Deep learning has the potential to revolutionize sports performance, with applications ranging from perception and comprehension to decision. This article presents a comprehensive survey of deep learning in sports performance, focusing on three main aspects: algorithms, datasets and virtual environments, and challenges. First, we discuss the hierarchical structure of deep learning algorithms in sports performance which includes perception, comprehension and decision while comparing their strengths and weaknesses. Second, we list widely used existing datasets in sports and highlight their characteristics and limitations. Finally, we summarize current challenges and point out future trends of deep learning in sports. Our survey provides valuable reference material for researchers interested in deep learning in sports applications.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 10","pages":"9368-9386"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10938940/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning has the potential to revolutionize sports performance, with applications ranging from perception and comprehension to decision. This article presents a comprehensive survey of deep learning in sports performance, focusing on three main aspects: algorithms, datasets and virtual environments, and challenges. First, we discuss the hierarchical structure of deep learning algorithms in sports performance which includes perception, comprehension and decision while comparing their strengths and weaknesses. Second, we list widely used existing datasets in sports and highlight their characteristics and limitations. Finally, we summarize current challenges and point out future trends of deep learning in sports. Our survey provides valuable reference material for researchers interested in deep learning in sports applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体育应用中的深度学习调查:感知、理解和决策。
深度学习有可能彻底改变运动表现,其应用范围从感知、理解到决策。本文对运动表现中的深度学习进行了全面调查,重点关注三个主要方面:算法、数据集和虚拟环境以及挑战。首先,我们讨论了深度学习算法在运动表现中的层次结构,包括感知、理解和决策,并比较了它们的优缺点。其次,我们列出了广泛使用的现有体育数据集,并突出了它们的特点和局限性。最后,我们总结了当前的挑战,并指出了深度学习在体育领域的未来趋势。我们的调查为对深度学习在体育应用方面感兴趣的研究人员提供了有价值的参考材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eliciting Pleasantness With Haptic Feedback: The Role of Physical and Pseudo-Haptic Resistance in Virtual Archery. HoloDreamer: Holistic 3D Panoramic Scene Generation from Text Descriptions. ForceCtrl: Hand-Raycasting with User-Defined Pinch Force for Control-Display Gain Application. Perceiving Slope and Acceleration: Evidence for Variable Tempo Sampling in Pitch-Based Sonification of Functions. ArtCrafter: Text-Image Aligning Artistic Attribute Transfer via Embedding Reframing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1