Schottky-mediated porphyrin-metal-organic framework/Ti3C2-MXene heterojunction for water decontamination via photonic-thermal-enzyme synergistic catalysis

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-03-27 DOI:10.1016/j.jcis.2025.137462
Shuo Li , Jinhe Li , Wei Ren , Ying Xu , Qinqin Liu
{"title":"Schottky-mediated porphyrin-metal-organic framework/Ti3C2-MXene heterojunction for water decontamination via photonic-thermal-enzyme synergistic catalysis","authors":"Shuo Li ,&nbsp;Jinhe Li ,&nbsp;Wei Ren ,&nbsp;Ying Xu ,&nbsp;Qinqin Liu","doi":"10.1016/j.jcis.2025.137462","DOIUrl":null,"url":null,"abstract":"<div><div>The inherent limitations of single-modal photocatalytic systems in complex wastewater treatment motivate the development of multifunctional catalysts to overcome restricted reaction kinetics and narrow activation spectra. In this study, we engineered a photo-thermal-enzyme triply synergistic catalyst by constructing an interfacial Schottky junction between porphyrinic metal–organic frameworks (PCN-224) and Ti<sub>3</sub>C<sub>2</sub>-MXene via a solvothermal synthesis. Scanning electron microscopy unveiled that PCN-224 cubes were anchored onto MXene’s delaminated sheets. This design uniquely integrated three complementary merits, including high photothermal conversion efficiency endowed by MXene, high charge separation enabled by Schottky-junction, and enzyme-mimetic activity through PCN-224 integration. Mechanistic studies combining first principles calculations, photoelectrochemical characterization, and operando infrared thermography revealed that the Schottky-junction optimized carrier utilization while localized heating favored to reduce activation energy of water and oxygen. The enzymatic oxidation of 3,3′,5,5′-testhylbenzidine was employed to evidence the peroxidase-like activity of the PCN-224/Mxene. This optimized composite achieved 91.2 % tetracycline (50 mg/L) and 97.4 % Rhodamine B (50 mg/L) degradation within 60 min, alongside 99.99 % and 99.92 % inactivation of methicillin-resistant <em>Staphylococcus aureus</em> and <em>Escherichia coli</em>, respectively. This work establishes a paradigm for multimechanistic synergy in environmental catalysis, demonstrating how rational catalysis engineering can simultaneously leverage photonic, thermal, and enzymatic activation pathways to overcome fundamental limitations in conventional systems. The demonstrated approach provides a scalable strategy for advanced water treatment technologies requiring high efficiency under real-world conditions.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"691 ","pages":"Article 137462"},"PeriodicalIF":9.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725008537","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The inherent limitations of single-modal photocatalytic systems in complex wastewater treatment motivate the development of multifunctional catalysts to overcome restricted reaction kinetics and narrow activation spectra. In this study, we engineered a photo-thermal-enzyme triply synergistic catalyst by constructing an interfacial Schottky junction between porphyrinic metal–organic frameworks (PCN-224) and Ti3C2-MXene via a solvothermal synthesis. Scanning electron microscopy unveiled that PCN-224 cubes were anchored onto MXene’s delaminated sheets. This design uniquely integrated three complementary merits, including high photothermal conversion efficiency endowed by MXene, high charge separation enabled by Schottky-junction, and enzyme-mimetic activity through PCN-224 integration. Mechanistic studies combining first principles calculations, photoelectrochemical characterization, and operando infrared thermography revealed that the Schottky-junction optimized carrier utilization while localized heating favored to reduce activation energy of water and oxygen. The enzymatic oxidation of 3,3′,5,5′-testhylbenzidine was employed to evidence the peroxidase-like activity of the PCN-224/Mxene. This optimized composite achieved 91.2 % tetracycline (50 mg/L) and 97.4 % Rhodamine B (50 mg/L) degradation within 60 min, alongside 99.99 % and 99.92 % inactivation of methicillin-resistant Staphylococcus aureus and Escherichia coli, respectively. This work establishes a paradigm for multimechanistic synergy in environmental catalysis, demonstrating how rational catalysis engineering can simultaneously leverage photonic, thermal, and enzymatic activation pathways to overcome fundamental limitations in conventional systems. The demonstrated approach provides a scalable strategy for advanced water treatment technologies requiring high efficiency under real-world conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肖特基介导的卟啉-金属-有机骨架/Ti3C2-MXene异质结在光子-热-酶协同催化下的水净化研究
单模态光催化系统在复杂废水处理中的固有局限性促使了多功能催化剂的发展,以克服有限的反应动力学和狭窄的激活谱。在这项研究中,我们通过溶剂热合成在卟啉金属有机骨架(PCN-224)和Ti3C2-MXene之间构建了一个界面Schottky结,设计了一种光热-酶三协同催化剂。扫描电子显微镜显示,PCN-224立方体固定在MXene的分层薄片上。该设计独特地集成了三个互补的优点,包括MXene赋予的高光热转换效率,schottky结实现的高电荷分离,以及通过PCN-224集成的模拟酶活性。结合第一性原理计算、光电化学表征和operando红外热成像的机理研究表明,schottkey结优化了载流子利用率,而局部加热有利于降低水和氧的活化能。利用酶促氧化3,3 ',5,5 ' -testhylbenzidine来证明PCN-224/Mxene具有过氧化物酶样活性。优化后的复合材料在60 min内对四环素(50 mg/L)和罗丹明B (50 mg/L)的降解率分别为91.2%和97.4%,对耐甲氧西林金黄色葡萄球菌和大肠杆菌的灭活率分别为99.99%和99.92%。这项工作为环境催化中的多机制协同建立了一个范例,展示了合理的催化工程如何同时利用光子、热和酶激活途径来克服传统系统的基本限制。演示的方法为在现实条件下需要高效率的先进水处理技术提供了可扩展的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
An interfacial layer constructed by in situ polymerizing trimethyl phosphate and ethylene carbonate enabling durable solid-state lithium metal batteries. Structural coupling of Mg-intercalated bilayer and monolayer V2O5 for high-stability and high-capacity aqueous zinc-ion batteries. Harvesting electricity from the multiple dynamic processes of water through the hierarchical structure of wood utilized for water transport. Site-selective alkaline metal ions electrochemical storage in porphyrin-based hydrogen-bonded organic framework. Crystalline boron-boosted Fenton-like activation of persulfate by carbon-coated nano zero-valent iron for efficient degradation of tetracycline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1