Combustion synthesis of carbon hollow nanocubes: DFT modelling and electrochemical performance analysis

IF 11.6 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2025-03-28 DOI:10.1016/j.carbon.2025.120268
Hayk H. Nersisyan , Junmo Jeong , Hoyoung Suh , Jong Hyeon Lee
{"title":"Combustion synthesis of carbon hollow nanocubes: DFT modelling and electrochemical performance analysis","authors":"Hayk H. Nersisyan ,&nbsp;Junmo Jeong ,&nbsp;Hoyoung Suh ,&nbsp;Jong Hyeon Lee","doi":"10.1016/j.carbon.2025.120268","DOIUrl":null,"url":null,"abstract":"<div><div>A straightforward, energy-efficient, and scalable combustion synthesis (CS) method for synthesizing graphitized hollow carbon nanocube (G-HCNC) through the magnesiothermic reduction of CaCO<sub>3</sub> is developed. By controlling the synthesis temperature, we effectively modulated the size of self-templated MgO nanocubes, thereby influencing the size and surface area of the hollow carbon nanocubes formed on the MgO surface. In our ongoing experiments, the edge size of G-HCNC ranged from 100 to 500 nm, with a 15–50 nm thickness. Remarkably, a specific surface area as high as 977.5 m<sup>2</sup>/g near the combustion boundary at <em>k</em> = 8 is achieved. When tested as support for Mo<sub>2</sub>C electrocatalyst, G-HCNC demonstrated low overpotential (120 mV) in the hydrogen evaluation reaction (HER). Moreover, when loaded with 10 % Ag, G-HCNC exhibits an excellent specific capacity (428.9 F/g) in a KOH electrolyte. This development holds promise for generating various complex structures enveloped by graphitized carbon layers for energy storage applications.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"238 ","pages":"Article 120268"},"PeriodicalIF":11.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622325002842","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A straightforward, energy-efficient, and scalable combustion synthesis (CS) method for synthesizing graphitized hollow carbon nanocube (G-HCNC) through the magnesiothermic reduction of CaCO3 is developed. By controlling the synthesis temperature, we effectively modulated the size of self-templated MgO nanocubes, thereby influencing the size and surface area of the hollow carbon nanocubes formed on the MgO surface. In our ongoing experiments, the edge size of G-HCNC ranged from 100 to 500 nm, with a 15–50 nm thickness. Remarkably, a specific surface area as high as 977.5 m2/g near the combustion boundary at k = 8 is achieved. When tested as support for Mo2C electrocatalyst, G-HCNC demonstrated low overpotential (120 mV) in the hydrogen evaluation reaction (HER). Moreover, when loaded with 10 % Ag, G-HCNC exhibits an excellent specific capacity (428.9 F/g) in a KOH electrolyte. This development holds promise for generating various complex structures enveloped by graphitized carbon layers for energy storage applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳空心纳米立方体燃烧合成:DFT建模和电化学性能分析
我们开发了一种通过镁热还原 CaCO3 合成石墨化空心碳纳米管(G-HCNC)的直接、节能和可扩展的燃烧合成(CS)方法。通过控制合成温度,我们有效地调节了自模板氧化镁纳米立方体的尺寸,从而影响了在氧化镁表面形成的空心碳纳米立方体的尺寸和表面积。在我们正在进行的实验中,G-HCNC 的边缘尺寸从 100 纳米到 500 纳米不等,厚度为 15-50 纳米。值得注意的是,在 k = 8 时,燃烧边界附近的比表面积高达 977.5 m2/g。在作为 Mo2C 电催化剂的支持物进行测试时,G-HCNC 在氢评估反应(HER)中表现出较低的过电位(120 mV)。此外,当负载 10% 的 Ag 时,G-HCNC 在 KOH 电解质中表现出卓越的比容量(428.9 F/g)。这项研究成果有望在储能应用中产生由石墨化碳层包裹的各种复杂结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
Unlocking multi-stage corrosion protection in zinc-rich epoxy coatings via HEDP-modified graphene/polyaniline: Synchronous activation of zinc and barrier enhancement The sp2-sp3 dynamic transformation driving nanodiamond film growth on Ti-coated carbon fiber: Mechanistic insights Dual dielectric-magnetic synergy in pine wood-derived carbon/MOF composites with channel structure for ultra-efficient electromagnetic wave absorption Screening binary supplementary cementitious materials for alite-ye'elimite cement: Unveiling diverging synergistic effects on the microstructure and properties Minimal metal–CNT-enrichment for maximal lubricity gain: boosting lithium grease performance for general applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1