Enhanced CO2 reduction on transition metal-doped AlN and GaN quantum dots: A DFT study

IF 2.4 3区 化学 Q4 CHEMISTRY, PHYSICAL Chemical Physics Pub Date : 2025-03-29 DOI:10.1016/j.chemphys.2025.112723
Zhilong Wang , Nahed H. Teleb , Mahmoud A.S. Sakr , Omar H. Abd-Elkader , Hazem Abdelsalam , Qinfang Zhang
{"title":"Enhanced CO2 reduction on transition metal-doped AlN and GaN quantum dots: A DFT study","authors":"Zhilong Wang ,&nbsp;Nahed H. Teleb ,&nbsp;Mahmoud A.S. Sakr ,&nbsp;Omar H. Abd-Elkader ,&nbsp;Hazem Abdelsalam ,&nbsp;Qinfang Zhang","doi":"10.1016/j.chemphys.2025.112723","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional AlN and GaN quantum dots were studied using density functional theory (DFT) to explore the effects of doping with light elements (C, Si, O, S) and metal atoms (Mo, Rh, Ag, Os, Ir, Au, Bi, As, Sn). Binding energy and vibrational frequency analyses confirmed the stability of the structures. Pristine nanodots were found to be insulators with a wide energy gap (~5 eV), which decreased significantly with doping, reaching 1.90 eV and 1.62 eV for S and Ag, respectively. UV–vis spectra supported the electronic calculations, showing a similar decrease in the optical gap. While pristine GaN and AlN required high energy for CO₂ reduction, doping with metals, particularly Rh and Ir, significantly lowered energy barriers for *COOH and *CO formation and CO release. Additionally, Rh and Ir-doped quantum dots demonstrated selectivity for CO₂ reduction over hydrogen evolution, highlighting their potential as efficient catalysts for sustainable CO₂ conversion.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"595 ","pages":"Article 112723"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425001247","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional AlN and GaN quantum dots were studied using density functional theory (DFT) to explore the effects of doping with light elements (C, Si, O, S) and metal atoms (Mo, Rh, Ag, Os, Ir, Au, Bi, As, Sn). Binding energy and vibrational frequency analyses confirmed the stability of the structures. Pristine nanodots were found to be insulators with a wide energy gap (~5 eV), which decreased significantly with doping, reaching 1.90 eV and 1.62 eV for S and Ag, respectively. UV–vis spectra supported the electronic calculations, showing a similar decrease in the optical gap. While pristine GaN and AlN required high energy for CO₂ reduction, doping with metals, particularly Rh and Ir, significantly lowered energy barriers for *COOH and *CO formation and CO release. Additionally, Rh and Ir-doped quantum dots demonstrated selectivity for CO₂ reduction over hydrogen evolution, highlighting their potential as efficient catalysts for sustainable CO₂ conversion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺杂过渡金属的氮化铝和氮化镓量子点对二氧化碳还原作用的增强:DFT 研究
利用密度泛函理论(DFT)对二维AlN和GaN量子点进行了研究,探讨了轻元素(C、Si、O、S)和金属原子(Mo、Rh、Ag、Os、Ir、Au、Bi、As、Sn)掺杂的影响。结合能和振动频率分析证实了结构的稳定性。原始纳米点是具有宽能隙(~5 eV)的绝缘体,随着掺杂的增加,S和Ag的能隙显著减小,分别为1.90 eV和1.62 eV。紫外-可见光谱支持电子计算,显示出类似的光学间隙减小。虽然原始GaN和AlN需要高能量来还原CO₂,但掺杂金属,特别是Rh和Ir,显著降低了*COOH和*CO形成和释放的能量垒。此外,Rh和ir掺杂量子点表现出CO₂还原的选择性,突出了它们作为可持续CO₂转化的有效催化剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
期刊最新文献
Transition from fibrous structures to micelles of sodium 2-ketooctanoate with increasing concentration in water Experimental and theoretical approach to determining the nature of energy transitions in linear halogen- and chalcogen-functionalized derivatives of thiazolo[2,3-b]quinazolines Generalized additive model (GAM) for magnetized Maxwell fluid flow over a rotating disk with endothermic/exothermic chemical reactions First-principles investigation of structural, electronic, optical, thermoelectric, and mechanical properties of Eu- and Tb-doped Sb₂Se₃ Mutation in DNA: A quantum mechanical non-adiabatic model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1