Cellulose nanofiber-reinforced dual-network multifunctional ion-conductive hydrogel with highly sensitive temperature and stress sensing properties for wearable flexible sensors

IF 5.4 2区 化学 Q2 CHEMISTRY, PHYSICAL Colloids and Surfaces A: Physicochemical and Engineering Aspects Pub Date : 2025-03-26 DOI:10.1016/j.colsurfa.2025.136757
Xiajing Hong , Yalei Wang , Zhiwei Du , Tailin Li , Yuqing Wu , Yalan Li , Xiurong Li
{"title":"Cellulose nanofiber-reinforced dual-network multifunctional ion-conductive hydrogel with highly sensitive temperature and stress sensing properties for wearable flexible sensors","authors":"Xiajing Hong ,&nbsp;Yalei Wang ,&nbsp;Zhiwei Du ,&nbsp;Tailin Li ,&nbsp;Yuqing Wu ,&nbsp;Yalan Li ,&nbsp;Xiurong Li","doi":"10.1016/j.colsurfa.2025.136757","DOIUrl":null,"url":null,"abstract":"<div><div>Flexible multifunctional hydrogels show tremendous potential for advanced wearable electronics and biosensing applications. This study develops an eco-friendly strategy utilizing cellulose nanofibers (CNF) - renewable, high-aspect-ratio nanomaterials with superior mechanical strength - as multiscale reinforcements in polyacrylamide (PAM) hydrogels. The hierarchical design achieves synergistic performance enhancements through three-scale interactions: molecular-scale hydrogen bonding between CNF hydroxyls and PAM amide groups restricts chain slippage, enabling efficient stress transfer while guiding ordered ion distribution for enhanced strain sensitivity. Nanoscale CNF networks collaborate with dimethyl sulfoxide (DMSO) to optimize microstructure, yielding exceptional thermal stability (&lt;20 % mass loss at 50 °C) through vapor pressure suppression and solvent retention. Macroscopically, CNF acts as physical crosslinkers in the dual-network hydrogel, delivering remarkable mechanical properties including high toughness (0.32 MJ/m³), ultra-stretchability (305 % strain), and autonomous self-healing (&gt;60 % efficiency). The hydrogel demonstrates dual-mode temperature sensitivity with distinct thermal response coefficients (1.703 %/°C at 0–50 °C; 0.394 %/°C at 50–90 °C) and precise motion detection capabilities, enabling real-time monitoring of human activities. This multiscale engineering approach establishes a universal paradigm for designing sustainable, high-performance hydrogels that integrate mechanical resilience, environmental stability, and multi-signal sensing functions.</div></div>","PeriodicalId":278,"journal":{"name":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","volume":"717 ","pages":"Article 136757"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces A: Physicochemical and Engineering Aspects","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927775725006600","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible multifunctional hydrogels show tremendous potential for advanced wearable electronics and biosensing applications. This study develops an eco-friendly strategy utilizing cellulose nanofibers (CNF) - renewable, high-aspect-ratio nanomaterials with superior mechanical strength - as multiscale reinforcements in polyacrylamide (PAM) hydrogels. The hierarchical design achieves synergistic performance enhancements through three-scale interactions: molecular-scale hydrogen bonding between CNF hydroxyls and PAM amide groups restricts chain slippage, enabling efficient stress transfer while guiding ordered ion distribution for enhanced strain sensitivity. Nanoscale CNF networks collaborate with dimethyl sulfoxide (DMSO) to optimize microstructure, yielding exceptional thermal stability (<20 % mass loss at 50 °C) through vapor pressure suppression and solvent retention. Macroscopically, CNF acts as physical crosslinkers in the dual-network hydrogel, delivering remarkable mechanical properties including high toughness (0.32 MJ/m³), ultra-stretchability (305 % strain), and autonomous self-healing (>60 % efficiency). The hydrogel demonstrates dual-mode temperature sensitivity with distinct thermal response coefficients (1.703 %/°C at 0–50 °C; 0.394 %/°C at 50–90 °C) and precise motion detection capabilities, enabling real-time monitoring of human activities. This multiscale engineering approach establishes a universal paradigm for designing sustainable, high-performance hydrogels that integrate mechanical resilience, environmental stability, and multi-signal sensing functions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于可穿戴柔性传感器的高灵敏度温度和应力传感性能的纤维素纳米纤维增强双网多功能离子导电水凝胶
柔性多功能水凝胶在先进的可穿戴电子和生物传感应用中显示出巨大的潜力。本研究开发了一种利用纤维素纳米纤维(CNF)作为聚丙烯酰胺(PAM)水凝胶的多尺度增强材料的环保策略。纤维素纳米纤维是一种可再生的、具有优越机械强度的高纵横比纳米材料。层次化设计通过三个尺度的相互作用实现了协同性能的增强:CNF羟基和PAM酰胺基团之间的分子尺度氢键限制了链滑移,实现了有效的应力传递,同时引导有序的离子分布,增强了应变敏感性。纳米级CNF网络与二甲基亚砜(DMSO)合作,优化微观结构,通过蒸汽压抑制和溶剂保留,产生卓越的热稳定性(50°C时质量损失<; 20% %)。宏观上,CNF作为双网络水凝胶中的物理交联剂,提供了卓越的机械性能,包括高韧性(0.32 MJ/m³)、超拉伸性(305 %应变)和自主自修复(>;60 %效率)。水凝胶表现出双模温度敏感性,在0-50℃时具有明显的热响应系数(1.703 %/°C;0.394 %/°C(50-90°C)和精确的运动检测功能,实现对人类活动的实时监控。这种多尺度工程方法为设计集机械弹性、环境稳定性和多信号传感功能于一体的可持续、高性能水凝胶建立了通用范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Sodium persulfate (SPS)
来源期刊
CiteScore
8.70
自引率
9.60%
发文量
2421
审稿时长
56 days
期刊介绍: Colloids and Surfaces A: Physicochemical and Engineering Aspects is an international journal devoted to the science underlying applications of colloids and interfacial phenomena. The journal aims at publishing high quality research papers featuring new materials or new insights into the role of colloid and interface science in (for example) food, energy, minerals processing, pharmaceuticals or the environment.
期刊最新文献
Study on the behavior of droplet impacting and wetting on the coal dust surface in the presence of sodium dodecyl sulfate Facile construction of sustainable anisotropic porous polylactic acid coating for high-performance passive radiative cooling Preparation of durable and flame retardant polyester fabric using eco-friendly supercritical carbon dioxide NH2-MIL-125 (Ti)-derived TiO2/NC anchored on GO layers for electrochemical detection of carcinogenic antioxidant Effects of different aging processes on the surface properties of tire wear particles and the molecular characteristics of dissolved organic matter leaching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1