Optimal Space-Variant Anisotropic Tikhonov Regularization for Full Waveform Inversion of Sparse Data

Ali Gholami;Silvia Gazzola
{"title":"Optimal Space-Variant Anisotropic Tikhonov Regularization for Full Waveform Inversion of Sparse Data","authors":"Ali Gholami;Silvia Gazzola","doi":"10.1109/LGRS.2025.3550682","DOIUrl":null,"url":null,"abstract":"Full waveform inversion (FWI) is a challenging, ill-posed nonlinear inverse problem that requires robust regularization techniques to stabilize the solution and yield geologically meaningful results, especially when dealing with sparse data. Standard Tikhonov regularization, though commonly used in FWI, applies uniform smoothing that often leads to oversmoothing of key geological features, as it fails to account for the underlying structural complexity of the subsurface. To overcome this limitation, we propose an FWI algorithm enhanced by a novel Tikhonov regularization technique involving a parametric regularizer, which is automatically optimized to apply directional space-variant smoothing. Specifically, the parameters defining the regularizer (orientation and anisotropy) are treated as additional unknowns in the objective function, allowing the algorithm to estimate them simultaneously with the model. We introduce an efficient numerical implementation for FWI with the proposed space-variant regularization. Numerical tests on sparse data demonstrate the proposed method’s effectiveness and robustness in reconstructing models with complex structures, significantly improving the inversion results compared with the standard Tikhonov regularization.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10924238","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10924238/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Full waveform inversion (FWI) is a challenging, ill-posed nonlinear inverse problem that requires robust regularization techniques to stabilize the solution and yield geologically meaningful results, especially when dealing with sparse data. Standard Tikhonov regularization, though commonly used in FWI, applies uniform smoothing that often leads to oversmoothing of key geological features, as it fails to account for the underlying structural complexity of the subsurface. To overcome this limitation, we propose an FWI algorithm enhanced by a novel Tikhonov regularization technique involving a parametric regularizer, which is automatically optimized to apply directional space-variant smoothing. Specifically, the parameters defining the regularizer (orientation and anisotropy) are treated as additional unknowns in the objective function, allowing the algorithm to estimate them simultaneously with the model. We introduce an efficient numerical implementation for FWI with the proposed space-variant regularization. Numerical tests on sparse data demonstrate the proposed method’s effectiveness and robustness in reconstructing models with complex structures, significantly improving the inversion results compared with the standard Tikhonov regularization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏数据全波形反演的最优空变各向异性Tikhonov正则化
全波形反演(FWI)是一个具有挑战性的不适定非线性反演问题,需要鲁棒正则化技术来稳定解并产生有地质意义的结果,特别是在处理稀疏数据时。标准Tikhonov正则化虽然在FWI中常用,但由于无法考虑地下潜在结构的复杂性,其采用的均匀平滑通常会导致关键地质特征的过度平滑。为了克服这一限制,我们提出了一种FWI算法,该算法由一种新的Tikhonov正则化技术增强,该技术涉及参数正则化器,该算法自动优化以应用定向空间变平滑。具体来说,定义正则化器的参数(方向和各向异性)被视为目标函数中的附加未知数,允许算法与模型同时估计它们。我们引入了一种基于空间变正则化的FWI有效的数值实现。在稀疏数据上的数值试验表明,该方法对复杂结构模型的重构具有较好的有效性和鲁棒性,与标准Tikhonov正则化方法相比,反演结果明显改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dip-Guided Poststack Inversion via Structure-Tensor Regularization IEEE Geoscience and Remote Sensing Letters Institutional Listings IEEE Geoscience and Remote Sensing Letters information for authors Corrections to “Spire Near-Nadir GNSS-R for Sea Ice Detection: First Results” High-Frequency GPR Data Reconstruction With Conditional GAN and Contrastive Unpaired Translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1