AERO: Adaptive Edge-Cloud Orchestration With a Sub-1K-Parameter Forecasting Model

Berend J. D. Gort;Godfrey M. Kibalya;Angelos Antonopoulos
{"title":"AERO: Adaptive Edge-Cloud Orchestration With a Sub-1K-Parameter Forecasting Model","authors":"Berend J. D. Gort;Godfrey M. Kibalya;Angelos Antonopoulos","doi":"10.1109/TMLCN.2025.3553100","DOIUrl":null,"url":null,"abstract":"Effective resource management in edge-cloud networks is crucial for meeting Quality of Service (QoS) requirements while minimizing operational costs. However, dynamic and fluctuating workloads pose significant challenges for accurate workload prediction and efficient resource allocation, particularly in resource-constrained edge environments. In this paper, we introduce AERO (Adaptive Edge-cloud Resource Orchestration), a novel lightweight forecasting model designed to address these challenges. AERO features an adaptive period detection mechanism that dynamically identifies dominant periodicities in multivariate workload data, allowing it to adjust to varying patterns and abrupt changes. With fewer than 1,000 parameters, AERO is highly suitable for deployment on edge devices with limited computational capacity. We formalize our approach through a comprehensive system model and extend an existing simulation framework with predictor modules to evaluate AERO’s performance in realistic cloud-edge environments. Our extensive evaluations on real-world cloud workload datasets demonstrate that AERO achieves comparable prediction accuracy to complex state-of-the-art models with millions of parameters, while significantly reducing model size and computational overhead. In addition, simulations show that AERO improves orchestration performance, reducing energy consumption and response times compared to existing proactive and reactive approaches. Our live deployment experiments further validate these findings, demonstrating that AERO consistently delivers superior performance. These results highlight AERO as an effective solution for improving resource management and reducing operational costs in dynamic cloud-edge environments.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"3 ","pages":"463-478"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10935743","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10935743/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Effective resource management in edge-cloud networks is crucial for meeting Quality of Service (QoS) requirements while minimizing operational costs. However, dynamic and fluctuating workloads pose significant challenges for accurate workload prediction and efficient resource allocation, particularly in resource-constrained edge environments. In this paper, we introduce AERO (Adaptive Edge-cloud Resource Orchestration), a novel lightweight forecasting model designed to address these challenges. AERO features an adaptive period detection mechanism that dynamically identifies dominant periodicities in multivariate workload data, allowing it to adjust to varying patterns and abrupt changes. With fewer than 1,000 parameters, AERO is highly suitable for deployment on edge devices with limited computational capacity. We formalize our approach through a comprehensive system model and extend an existing simulation framework with predictor modules to evaluate AERO’s performance in realistic cloud-edge environments. Our extensive evaluations on real-world cloud workload datasets demonstrate that AERO achieves comparable prediction accuracy to complex state-of-the-art models with millions of parameters, while significantly reducing model size and computational overhead. In addition, simulations show that AERO improves orchestration performance, reducing energy consumption and response times compared to existing proactive and reactive approaches. Our live deployment experiments further validate these findings, demonstrating that AERO consistently delivers superior performance. These results highlight AERO as an effective solution for improving resource management and reducing operational costs in dynamic cloud-edge environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AERO:利用 1K 参数以下的预测模型进行自适应边缘云协调
在边缘云网络中,有效的资源管理对于满足服务质量(QoS)要求同时最小化运营成本至关重要。然而,动态和波动的工作负载对准确的工作负载预测和有效的资源分配构成了重大挑战,特别是在资源受限的边缘环境中。在本文中,我们介绍了AERO(自适应边缘云资源编排),这是一种新的轻量级预测模型,旨在解决这些挑战。AERO具有自适应周期检测机制,可以动态识别多变量工作负载数据中的主要周期性,使其能够适应不同的模式和突变。AERO只有不到1000个参数,非常适合部署在计算能力有限的边缘设备上。我们通过一个全面的系统模型形式化了我们的方法,并使用预测模块扩展了现有的仿真框架,以评估AERO在现实云边缘环境中的性能。我们对现实世界的云工作负载数据集进行了广泛的评估,结果表明,AERO的预测精度与具有数百万个参数的最先进的复杂模型相当,同时显著降低了模型尺寸和计算开销。此外,仿真表明,与现有的主动和被动方法相比,AERO提高了编排性能,减少了能耗和响应时间。我们的现场部署实验进一步验证了这些发现,证明AERO始终提供卓越的性能。这些结果表明,AERO是一种在动态云边缘环境中改善资源管理和降低运营成本的有效解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Agent Federated Learning Using Covariance-Based Nearest Neighbor Gaussian Processes Front Cover IEEE Communications Society Board of Governors Adaptive Nonlinear Digital Self-Interference Cancellation for Full-Duplex Wireless Systems Using Hypernetwork-Based Incremental Learning Radio Map-Based Delivery Sequence Design and Trajectory Optimization in UAV Cargo Delivery Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1