The potentials of uncertainty analysis and Bayesian optimization in HONO source modeling diagnosis and improvement

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Research Pub Date : 2025-03-28 DOI:10.1016/j.envres.2025.121494
Jinlong Zhang , Wending Wang , Keyu Zhu , Zhijiong Huang , Li Sheng , Songdi Liao , Xin Yuan , Yanan Hu , Jiangping Liu , Mengxue Tang , Xiaofeng Huang , Jie Li , Zifa Wang , Junyu Zheng
{"title":"The potentials of uncertainty analysis and Bayesian optimization in HONO source modeling diagnosis and improvement","authors":"Jinlong Zhang ,&nbsp;Wending Wang ,&nbsp;Keyu Zhu ,&nbsp;Zhijiong Huang ,&nbsp;Li Sheng ,&nbsp;Songdi Liao ,&nbsp;Xin Yuan ,&nbsp;Yanan Hu ,&nbsp;Jiangping Liu ,&nbsp;Mengxue Tang ,&nbsp;Xiaofeng Huang ,&nbsp;Jie Li ,&nbsp;Zifa Wang ,&nbsp;Junyu Zheng","doi":"10.1016/j.envres.2025.121494","DOIUrl":null,"url":null,"abstract":"<div><div>Nitrous acid (HONO) plays a critical role in atmospheric chemistry, significantly influencing hydroxyl radical (OH) production and the formation of secondary pollutants. However, current atmospheric chemical transport models (CTMs) still underestimate HONO formation, due to uncertainties in source parameterizations. This study proposed a new framework that combines uncertainty analysis with Bayesian optimization (RFM-BMC) to diagnose and reduce uncertainties in HONO source parameterizations, using the North China Plain (NCP) as a case study. The results show that uncertainties in source parameterizations cause HONO simulation concentrations varying by 8–20 times the baseline values. The primary contributors to uncertainties in HONO simulations include heterogeneous reactions on aerosol (33–59 %) and ground surfaces (18–30 %), vehicle emissions (12–33 %), and nitrate photolysis (26–30 %). By optimizing these parameters using observational data, the accuracy of HONO simulations significantly improves, reducing the normalized mean bias by 59 %. Additionally, this study identifies soil emissions, light-induced NO<sub>2</sub> heterogeneous reactions and underestimated nitrate as important underrepresented HONO sources in CTMs. These sources contribute to the systematic underestimation of HONO concentrations during midday (08:00–14:00). This work provides valuable insights for refining HONO source parameterizations and improving air quality simulations. Furthermore, the RFM-BMC framework can be applied to optimize parameterizations of other atmospheric chemical processes, such as sulfate and secondary organic aerosol formation.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"276 ","pages":"Article 121494"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125007455","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrous acid (HONO) plays a critical role in atmospheric chemistry, significantly influencing hydroxyl radical (OH) production and the formation of secondary pollutants. However, current atmospheric chemical transport models (CTMs) still underestimate HONO formation, due to uncertainties in source parameterizations. This study proposed a new framework that combines uncertainty analysis with Bayesian optimization (RFM-BMC) to diagnose and reduce uncertainties in HONO source parameterizations, using the North China Plain (NCP) as a case study. The results show that uncertainties in source parameterizations cause HONO simulation concentrations varying by 8–20 times the baseline values. The primary contributors to uncertainties in HONO simulations include heterogeneous reactions on aerosol (33–59 %) and ground surfaces (18–30 %), vehicle emissions (12–33 %), and nitrate photolysis (26–30 %). By optimizing these parameters using observational data, the accuracy of HONO simulations significantly improves, reducing the normalized mean bias by 59 %. Additionally, this study identifies soil emissions, light-induced NO2 heterogeneous reactions and underestimated nitrate as important underrepresented HONO sources in CTMs. These sources contribute to the systematic underestimation of HONO concentrations during midday (08:00–14:00). This work provides valuable insights for refining HONO source parameterizations and improving air quality simulations. Furthermore, the RFM-BMC framework can be applied to optimize parameterizations of other atmospheric chemical processes, such as sulfate and secondary organic aerosol formation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不确定性分析和贝叶斯优化在 HONO 源模型诊断和改进中的潜力。
亚硝酸(HONO)在大气化学中起着至关重要的作用,显著影响羟基自由基(OH)的产生和二次污染物的形成。然而,由于源参数化的不确定性,目前的大气化学传输模式(CTMs)仍然低估了HONO的形成。以华北平原(NCP)为例,提出了一种将不确定性分析与贝叶斯优化(RFM-BMC)相结合的新框架来诊断和降低HONO源参数化的不确定性。结果表明,源参数化的不确定性导致HONO模拟浓度的变化是基线值的8-20倍。造成HONO模拟不确定性的主要因素包括气溶胶(33-59%)和地面(18-30%)上的非均相反应、车辆排放(12-33%)和硝酸盐光解(26-30%)。利用观测数据对这些参数进行优化,显著提高了HONO模拟的精度,将归一化均值偏差降低了59%。此外,本研究确定了土壤排放、光诱导的NO2非均相反应和被低估的硝酸盐是CTMs中未被充分代表的重要HONO来源。这些来源导致系统性地低估正午(08:00-14:00)期间的HONO浓度。这项工作为改进HONO源参数化和改进空气质量模拟提供了有价值的见解。此外,RFM-BMC框架可用于优化其他大气化学过程的参数化,如硫酸盐和二次有机气溶胶的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
期刊最新文献
Retraction notice to ‘Catalytic pyrolysis of fish waste oil using ZSM-5 catalyst for the production of renewable biofuel’ [Environ. Res. 258 (2024) 119486] Stage-specific FeS-mediated regulation of Paracoccus denitrificans during carbon consumption by machine learning-assisted comparative proteomics Association of residential green space, blue space, and natural environment with osteoarthritis risk: The role of air pollution and phenotypic age acceleration Sustainable sand filtration strategies for microplastic removal in irrigation water. Nitrogen and phosphorus addition mitigates microplastic community impacts on coastal saline-alkaline wetland ecosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1