Toward a unified benchmark and framework for deep learning-based prediction of nuclear magnetic resonance chemical shifts

IF 18.3 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2025-03-28 DOI:10.1038/s43588-025-00783-z
Fanjie Xu, Wentao Guo, Feng Wang, Lin Yao, Hongshuai Wang, Fujie Tang, Zhifeng Gao, Linfeng Zhang, Weinan E, Zhong-Qun Tian, Jun Cheng
{"title":"Toward a unified benchmark and framework for deep learning-based prediction of nuclear magnetic resonance chemical shifts","authors":"Fanjie Xu, Wentao Guo, Feng Wang, Lin Yao, Hongshuai Wang, Fujie Tang, Zhifeng Gao, Linfeng Zhang, Weinan E, Zhong-Qun Tian, Jun Cheng","doi":"10.1038/s43588-025-00783-z","DOIUrl":null,"url":null,"abstract":"The study of structure–spectrum relationships is essential for spectral interpretation, impacting structural elucidation and material design. Predicting spectra from molecular structures is challenging due to their complex relationships. Here we introduce NMRNet, a deep learning framework using the SE(3) Transformer for atomic environment modeling, following a pretraining and fine-tuning paradigm. To support the evaluation of nuclear magnetic resonance chemical shift prediction models, we have established a comprehensive benchmark based on previous research and databases, covering diverse chemical systems. Applying NMRNet to these benchmark datasets, we achieve competitive performance in both liquid-state and solid-state nuclear magnetic resonance datasets, demonstrating its robustness and practical utility in real-world scenarios. Our work helps to advance deep learning applications in analytical and structural chemistry. A deep learning framework (NMRNet) is developed to model atomic environments for predicting NMR chemical shifts. A benchmark dataset, nmrshiftdb2-2024, is also established to provide a standardized source for evaluating NMR models.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 4","pages":"292-300"},"PeriodicalIF":18.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-025-00783-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The study of structure–spectrum relationships is essential for spectral interpretation, impacting structural elucidation and material design. Predicting spectra from molecular structures is challenging due to their complex relationships. Here we introduce NMRNet, a deep learning framework using the SE(3) Transformer for atomic environment modeling, following a pretraining and fine-tuning paradigm. To support the evaluation of nuclear magnetic resonance chemical shift prediction models, we have established a comprehensive benchmark based on previous research and databases, covering diverse chemical systems. Applying NMRNet to these benchmark datasets, we achieve competitive performance in both liquid-state and solid-state nuclear magnetic resonance datasets, demonstrating its robustness and practical utility in real-world scenarios. Our work helps to advance deep learning applications in analytical and structural chemistry. A deep learning framework (NMRNet) is developed to model atomic environments for predicting NMR chemical shifts. A benchmark dataset, nmrshiftdb2-2024, is also established to provide a standardized source for evaluating NMR models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为基于深度学习的核磁共振化学位移预测建立统一的基准和框架。
结构-光谱关系的研究对光谱解释至关重要,影响着结构解析和材料设计。由于分子结构之间的复杂关系,从分子结构中预测光谱具有挑战性。在这里,我们介绍NMRNet,这是一个使用SE(3) Transformer进行原子环境建模的深度学习框架,遵循预训练和微调范例。为了支持核磁共振化学位移预测模型的评估,我们在前人研究和数据库的基础上建立了一个综合基准,涵盖了不同的化学体系。将NMRNet应用于这些基准数据集,我们在液态和固态核磁共振数据集上都取得了具有竞争力的性能,证明了其在现实场景中的鲁棒性和实用性。我们的工作有助于推进深度学习在分析化学和结构化学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Reshaping computation with quantum mechanics Opportunities in full-stack design of low-overhead fault-tolerant quantum computation Pitfalls and prospects of quantum machine learning Deep-learning electronic structure calculations Machine learning interatomic potentials at the centennial crossroads of quantum mechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1