Carbon-nanotube wall nanoengineering strategy to stabilize FeNi nanoparticles and Fe single atoms for rechargeable Zn–air batteries†

IF 6.4 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2025-04-01 DOI:10.1039/D4QI03361B
Yi-Yin Yang, Lin He, Peng-Fei Xie, Peng Dong, Hao Quan, Tao Li, Lingzhe Fang, Dong Feng, Yubo Xing and Jin-Cheng Li
{"title":"Carbon-nanotube wall nanoengineering strategy to stabilize FeNi nanoparticles and Fe single atoms for rechargeable Zn–air batteries†","authors":"Yi-Yin Yang, Lin He, Peng-Fei Xie, Peng Dong, Hao Quan, Tao Li, Lingzhe Fang, Dong Feng, Yubo Xing and Jin-Cheng Li","doi":"10.1039/D4QI03361B","DOIUrl":null,"url":null,"abstract":"<p >The great interest in rechargeable Zn–air batteries (ZABs) stimulates extensive research on efficient and robust electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, a novel ORR/OER bifunctional catalyst is developed using carbon-nanotube wall nanoengineering. In this design, FeNi nanoparticles are inserted into the wall <em>via</em> a carbothermic reaction to enhance the OER, while isolated Fe atoms in iron-phthalocyanine anchored on the wall <em>via</em> π–π coupling interaction are used to catalyze the ORR. Accordingly, the resulting electrocatalyst exhibits outstanding ORR and OER activities such as a small potential difference of 0.67 V. <em>In situ</em> Raman spectroscopy measurements verify the presence of reconstruction transformation from an alloy phase to a high-activity spinel phase during the OER process. When used in ZABs, high peak power densities of 208.5 mW cm<small><sup>−2</sup></small> under a liquid-state electrolyte and 150.1 mW cm<small><sup>−2</sup></small> in a solid-state electrolyte are demonstrated. Furthermore, outstanding battery durability is illustrated by a small and stable charge–discharge voltage gap of 0.78 V at 10 mA cm<small><sup>−2</sup></small> after 1400 cycles. This study offers a novel method to fabricate bifunctional ORR/OER electrocatalysts and possibly extends to multi-site catalysts.</p>","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":" 14","pages":" 4409-4416"},"PeriodicalIF":6.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qi/d4qi03361b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

The great interest in rechargeable Zn–air batteries (ZABs) stimulates extensive research on efficient and robust electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, a novel ORR/OER bifunctional catalyst is developed using carbon-nanotube wall nanoengineering. In this design, FeNi nanoparticles are inserted into the wall via a carbothermic reaction to enhance the OER, while isolated Fe atoms in iron-phthalocyanine anchored on the wall via π–π coupling interaction are used to catalyze the ORR. Accordingly, the resulting electrocatalyst exhibits outstanding ORR and OER activities such as a small potential difference of 0.67 V. In situ Raman spectroscopy measurements verify the presence of reconstruction transformation from an alloy phase to a high-activity spinel phase during the OER process. When used in ZABs, high peak power densities of 208.5 mW cm−2 under a liquid-state electrolyte and 150.1 mW cm−2 in a solid-state electrolyte are demonstrated. Furthermore, outstanding battery durability is illustrated by a small and stable charge–discharge voltage gap of 0.78 V at 10 mA cm−2 after 1400 cycles. This study offers a novel method to fabricate bifunctional ORR/OER electrocatalysts and possibly extends to multi-site catalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可充电锌空气电池中稳定FeNi纳米粒子和Fe单原子的碳纳米管壁纳米工程策略
可充电锌空气电池(ZABs)引起了人们对氧还原/析出反应(ORR/OER)高效、稳定电催化剂的广泛研究。本文采用碳纳米管壁纳米工程技术,研制了一种新型ORR/OER双功能催化剂。其中,FeNi纳米颗粒通过碳热反应插入壁以提高OER,而铁-酞菁中分离的Fe原子通过π-π偶联作用锚定在壁上以催化ORR。因此,所制得的电催化剂具有出色的ORR和OER活性,电位差很小,仅为0.67 V。原位拉曼光谱测量证实了在OER过程中存在从合金相到高活性尖晶石相的重建转变。当用于ZABs时,在液态电解质下的峰值功率密度为208.5 mW cm-2,在固态电解质下为150.1 mW cm-2。此外,在10ma cm-2下,经过1400次循环后,电池的充放电电压间隙小而稳定,为0.78 V,这表明电池具有出色的耐用性。该研究为制备双功能ORR/OER电催化剂提供了一种新方法,并有可能扩展到多位点催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
Ultra-efficient energy transfer and near-infrared luminescence in hexagonal aluminate phosphors enabled by heterogeneous ion pairs co-doping Truss bridge-like anhydrous stacking in hybrid crystal triggers ultra-high stability and robust birefringence Bridging the gap: thymine segments to create single-strand versions of DNA2-[Ag₁₆Cl₂]8+ A low-loss optical waveguide from a 1D europium nanocluster Exciplex-based multi-stimuli-responsive luminescent materials: photo-recoverable mechanochromic luminescence for reusable paper applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1